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PREFACE 

Our knowledge of the ionosphere and its interactions with the 
neutral atmosphere has increased rapidly in the past decade due to the 
availability of a greater wealth of better observational data combined 
with the capability of advanced computer systems to handle complicated 
numerical problems. 

Complex theoretical models and their numerical solutions on large 
computer systems are a requisite to the further advancement of our 
knowledge. This document contains a collection of papers describing 
theoretical modelling activities and numerical solutions obtained using 
the models by personnel of Mississippi State University. It is hoped 
that the document will provide readers a concept of the complexity of 
modelling a three-fluid plasma. 
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CHAPTER I 

NUMERICAL SOLUTION FOR PROPAGATION OF COUPLED LONGITUDINAL 

AND TRANSVERSE WAVES NORMAL TO THE APPLIED MAGNETIC 

FIELD IN A THREE-FLUID MEDIUM 

Ronald W. McClendon and David L. Murphree 

NOTE: Figures, references, and equations begin a new sequence in each Chapter. 
Also, the Appendices are lettered consecutively by Chapter, and 
each Chapter includes its own List of Symbols. 
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Introduction 

A three-fluid theory, using Maxwell's equations together with a 

set of coupled hydrodynamic equations for an interacting mixture of 

electrons, ions, and neutral molecules, has been employed by Tanenbaum 

and Mintzer 1 to examine small-amplitude oscillations in an infinite, 

homogeneous , partly ionized gas with a uniform external magnetic field. 

Plots of phase velocity versus frequency were obtained for the case of 

negligible collisional damping for wave propagation along and normal 

to the applied magnetic field. A set of approximate solutions to the 

dispersion relation was employed to yield the phase velocities for various 

frequency bands. 

An investigation by Dahl and Murphree2 yielded a solution to the 

complete three-fluid dispersion relation governing the propagation of 

longitudinal waves parallel to the applied magnetic field. Some differences 

were noticed between their phase velocity plot and the approximate solution 

given by Tanenbaum and Mintzer. In making a comparison, Dahl and Murphree 

were able to substantiate their results by requiring continuity in both 

phase velocity and e-folding distance curves with frequency change. 

Tanenbaum and Mintzer were limited in that their solution was just for 

the phase velocity and it was valid only in various frequency bands. 

Connecting the curves between the frequency bands was a possible source 

of error. 

This paper will present a numerical solution to the complete three- 

fluid dispersion relation governing wave propagation normal to the magnetic 

field. Solutions have been determined for the complex wave numbers for a 

typical ionospheric condition without making any approximations to the 
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dispersion relation. Obtaining the solution without making any approxi- 

mations was made possible only.by the use of a computer method-to car$‘-.. 

out the extremely large number.of algebraic manipulations involved. These 
\ 

operations, accomplished by the PL/I-FORMAC interpreter in an IBM 360-40, 

could not have been performed manually. Plots of the phase velocity and 

damping characteristics of the resulting wave modes are presented for the 

frequency range 10 -5 < w < log. 

The phase velocity plot is compared to the approximate results of 

Tanenbaum and Mintzer. Although Tanenbaum and Mintzer had obtained phase 

velocity results for various frequency bands, a thorough investigation 

of the damping characteristics of the wave modes had not previously been 

performed. The purpose of the work described in this paper was to 

solve for the damping characteristics of the wave modes in addition to 

obtaining a complete numerical solution to the phase velocity over the 

entire frequency range. The resulting method allows for the complete 

solution of any wave propagation problem in a three-fluid medium. 

Theory 

A. General Dispersion Relation 

The derivation of the general dispersion relation which governs 

wave propagation of small perturbations in a partially ionized gas with 

an applied magnetic field present will be outlined. This derivation 

is presented in Reference 1. 

The following model is employed: 

(1) The degree of ionization is fixed 

(2) Each gas obeys the perfect gas law 

(3) Damping caused by the frictional forces of each gas allows 
for the conservation of total momentum of the system 

(4) No heat flow exists within the gases. 
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The set of equations given below describes the three-fluid mixture. 

(1) Maxwell's equations: 

(2) The continuity equation for each gas: 

kP,in=- , , P e,Ln v l v e,i,n 

(3) The momentum equation for 

&(Tp-‘(E+ 
Fe x TI 

c )- 
e 

each gas: 

"e - - Wei(Te - 'ii' - wen(Ve - "' 
'e 

--- s (i$> 
=P+ 

vi x ii VPi 

c ) 
- - - wie (Vi - "1 - Win(Yi - vn> 

Pi \ ._ 

"n $yn,=-, -w ne (in - Ve, - wni (in - 'i' 
n 

(4) The adiabatic condition for each gas: 

P 
e,i,n 

N-y 
e,i,n 

= constant 

To facilitate the solution a 3-D Cartesian coordinate system is 

chosen with x in the direction of wave propagation and z perpendicular 

to the plane formed by x and the applied magnetic field. The applied 

magnetic field vector can therefore be written Ho = (H H 
ox’ oy’ 

0) l 

The above plasma equations may be linearized by perturbing the quantities 

?I, ye i n, E, Ne i n and Pe i n with small periodic oscillations of 
9 , , s , , 

frequency w. For example, 

Ne 0 e 
= N + n ei(kx - ut) 

where No is the undisturbed electron density, ne the amplitude of the 
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perturbation, and Ne the resulting electron number density at any 

position x for any time t. The perturbation is considered-to propagate 

only in the x-direction, i.e., one-dimensional propagation. The perturbed 

quantities are then substituted into the plasma equations yielding 

twenty-one equations and.twenty-one unknowns. These equations can then 

be manipulated by substitution to yield a vector equation for the three 

components of the electron velocity. 

V ex 

-1 

V 
ey 

V ez 

=: 0 

(1) 
/ 

where 

A11 = (Cl/m) - (C C /C ) 35 1 + (w2w2 /mC > T 2 

A12 = A21 = - w2wTwL/mC 2 

A13 = iwwT[(C3/C1) - (C6/mC2) 1 

A22 = (C,/m> - (c4C6/C2> + w2w2L/mC2 

A23 = -A32 = - (iwwL/C2)[C4 - (C6/m)l 

<- _ - A31 = i~,[(C5/~C-~)-~(Cz;/C2) 1 
- 

A33 = AZ2 + (w2w2,/mC1) 

and 

Cl = wi - iwu ei + W2(" envnilY2' 

c2 = wZ(l 2 -1 
-n) - iwv ei + w2(v envni'Y1) 

c3 
2 2 =w -w. - k2U2 + iwv 

1 i i + w2b invni'Y2) 

2 
c4 - wf(1 2 -1 =w -n) + iwvi + w2(uinvni/Y1) 

c5 = w2 - wz - k2U2 + iwv 
e e + w2ben~ne/Y2) 

C6 = w2 - 2 -1 wz(l - n 1 + iwv, + w2(venune/Y1) 



where 

Yl = to2 + iwv, 

Y2 = Yl - k2U2 n 

2 0 = 
e,i 

(4ne No/m 
es2 1% 

OT,L = eHg,L/meC 

U 
e,i,n - (VP e,i,njPe,i,n)' 

n = kc/w 

B. Dispersion Relation for a Wave Propagating Normal to the Magnetic 
Field 

Examining waves propagating normal to the magnetic field, .the longi- 

tudinal-component of go will be zero. It follows that the longitudinal 

component of the electron cyclotron frequency, t, will also be zero. 

Applying this condition to Equation (1) we obtain 

AllVex + A13Vez = 0, 

A22Vey = 0, 

A31Vex + A33Vez = 0. c-9 

From the second of these equations we see that a transverse wave 

can propagate provided that A22 as previously defined is zero. This 

solution is not examined in this analysis. 

The first and third equation of Equations (2) form a set of linear 

homogeneous equations. The determinant of the matrix of coefficients 

must vanish in order that a nontrivial solution can exist. The dis- 

persion relation for the case of a wave propagating normal to a magnetic 

field therefore takes the form 

Al1A33 - A13A31 = 0 . (3) 

Examining Equation (3) it is obvious that this dispersion relation 

is an.extremely complicated equation in expanded form. The number of 

terms in this equation would make its use infeasible when working by hand. 
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This problem is considered later in the Disflussion. 

A computer method for carrying out the necessary algebra in order 

to obtain the dispersion relation k(w) was then required. The PL/I-FORMAC 

Symbslic Mathematics Interpreter3 has the capability of symbolic manipula- 

tion of mathematical expressions. The exprer,slons can contain variables, 

user-defined functions, constants up to 2295 digits, and symbolic constants, 

as well as functions such as SIN, COS, EXP, etc. A factored algebraic 

equation can be expanded and the coefficients of the various powers of any 

of the variables can be collected. This was especially useful in our 

solution for the coefficients of the dispersion relation. 

Having this facility available, the terms CL, l = 1,2,. . .,6 

were substituted into the appropriate A 
ij 

terms of Equation (3). This 

procedure yielded a twelfth degree equation in k, the wave number. 

Alk12 + A2klo + A3k8 + A4k6 + A5k4 + A6k2 + A7 = 0 (4) 

C. Newton-Raphson Iterative Solution 

The dispersion rdation could also be written in the form -~- 

Alx6 + A2x5 + A3x4 + A4x3 + A5x2 + A6x + A, = 0 (5) 

where x = k2 and the coefficients are complex numbers. A Newton-Raphson 

iterative procedure as shown below was chosen to solve for the roots of 

this equation. 

f <x,> 

xn+l = xn - f'(x,) 

or 

Alxi + A25 + A3x; + A43 -t A52 + A6xn + A7 
X n+l = xn - 6Alx; + 5A24 + 4A3x; + 3A4xi + 2A5xn + A6 

An initial estimate was made and the iteration was performed until a root 
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of the sixth degree equation was found. This root was then factored out 

of the equation by complex synthetic division. For example let x = a 

be a root found from the previous equation. Now by synthetic.division 

A1 A2 A3 A4 A5 A7 a 

*1 aB2 aB 3 aB 4 aB 5 aB 6 I 

A1 B2 B3 B4 B5 B6 0 

where B 2 = A2 + aA1, etc. then, 

(x - a)(Alx5 + B2x4 + B3x3 + B4x2 + B5x + B6) = 0 

Again the Newton-Raphson iterative procedure can be used to 

solve for a root of the resulting fifth degree equation. Let this root 

be x = B, therefore we have '5 

(x - a> (x - 13) $x4 + c2x3 + c3x2 + c4x +..c5) = 0 

By continuing this approach, the six roots to this sixth degree poly' 

nomial can be found. It is important to choose realistic values for 

the initial estimates in the iterative solution. If the estimate 

is too far removed from the actual root, the iterative procedure will 

not be successful. 

Discussion 

The computer solution for the wave number k, which describes the 
-, 

characteristics of the wave, can"be divided into two processes: 

(1) substitution and expansion of the general dispersion relation 
for the specific case of a wave propagating normal to a 
magnetic field 

(2) solution of the dispersion relation for the complex wave 
number. 
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The first process was performed largely by using the PL/I-FOPVAC 

Symbolic Mathematics Interpreter. The main feature of the FOEMAC inter- 

preter as applied to our problem was its ability to carry out algebraic 

manipulations. The process of expanding the dispersion relation given 

in Equation (3) would be essentially impossible to accomplish by hand 

without assigning numerical values to the variables. This method would. 

not be acceptable because a new dispersion relation would have to be 

derived manually for each change in the conditions and applied frequency. 

A FOBMAC program was written for the IBM 360 model 40 at Mississippi 

State University to carry out this operation. A simplified flow chart 

of this program is given in Appendix A. The input to this program consists 

of the applied frequency, magnetic field strength, and collision frequen- 

cies , plasma frequencies, acoustic velocities, number densities, and 

masses of the three species for the desired atmospheric condition. 

Due to the size of'lsome of the quantities exceeding the limitations 

of the computer, it was necessary _,.: to change the units of length and time 

to avoid an underflow or overflow condition. The length and time dimen- 

sion was also included in the input, and the velocity and frequency terms 

were converted accordingly. 

The dispersion relation given below was obtained from Equation (3) 

by substituting the expressiorkfor A ij l 

c2c2 + 2w2w2c c 2 
12 T12 - mClC4C6 - mCtC3C5 + m2C3C4C5C6 

222 44 22 - m 0 IJI~C~C~ + w UT - w UTC5C6 = 0 (6) 

If the expressions for the C'sjas previously defined were substituted 

into this equation by hand without assigning numerical values to the 

variables, the dispersion relation would be composed of several thousand 

terms. This process was initially attempted, but the complexity involved 

in expanding this equation by hand ruled this method impracticable. 
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Furthermore, after expansion the terms would have to be collected to form 

the real and imaginary components of the coefficients of the various 

powers of k. Equation (6) is the form of the dispersion relation before 

any substitutions or manipulations are performed in the FORMAC computer 

program. Since the available storage was not sufficient to hold the 

entire dispersion relation in expanded form, values for the applied 

frequency, cyclotron frequency, collision frequencies, plasma frequencies, 

and acoustic velocities were substituted. The dispersion relation was ',. 

then expanded, evaluated, < and ‘the coefficients of the twelfth degree 

polynomial were collected and punched out on cards. 
/ 
This approach 

gives a dispersion relation for each of the chosen points on the 

frequency range. 

To check the validity of the algebraic manipulations as performed 

by FORMAC, a test case was formulated. The expression (A + iB)n was 

expanded for each of the values n = 1, 2, 3, . . . . 10. For example, 

(A + iB)3 = A3 - 3B2A + i3BA2 3 -iB . 

These ten expansions were then performed manually and the results of 

the FOFU4AC program were shown to be correct. Our use of FORMAC was 

similar to this example since complex expressions were raised to powers 

and multiplied by other complex expressions. 

It had been hoped that for our problem, the coefficients of the 

wave number in the dispersion relation could remain in algebraic form. 

Storage problems forced the assignment of numerical values to the plasma 

parameters, consequently the coefficients of the various powers of k 

in.the final dispersion relation were numerical constants for the given 

conditions. Algebraic manipulations were still required since the wave 

number k was included in the expressions that had to be multiplied and 

raised to powers. To demonstrate this need, the test case can be used 

again by holding A as a variable and assigning B a value of two: This 

corresponds to holding k as a variable and assigning numerical values to 



10 

the other parameters in the problem considered in this paper. The resulting 

expression would be 

A3 + A2(6i) - A(12) -81 . 

The real and imaginary coefficients of the powers of A could then 

be collected. This is the process in extremely simplified formof the work 

performed by FORMAC to obtain the coefficients of the final dispersion 

relation. The analytical FORMAC compiler facilitated the analysis even 

when numerical values were substituted for the parameters because the 

requirement of manually rearranging the complex quantities in powers of 

k was eliminated. 

The problem was now reduced to the solution of a sixth degree poly- 

nomial in k2 with complex coefficients. The difficulty lay in the various 

sizes of the coefficients. A range of 10 20 ,in the- sizes of coefficients 

was not uncommon. 

A digital computer program was written for the UNIVAC 1106 at 

Mississippi State University to solve for the roots of a polynomial equa- 

tion with complex coefficients. The simplified flow chart for this program 

is given in Appendix C. The input to this program consists of the applied 

frequency, the length and time dimension, and the coefficients of the poly- 

nomial. Since we were working with a polynomial equal to zero (Eq. 5) it 

is permissible to multiply all the coefficients by some constant. 

Due to the size of the coefficients it was necessary to do this to 

avoid an overflow or underflow condition. The quantity by which the 

coefficients were multiplied was also included in the input to the poly- 

nomial roots program. The roots of the polynomial equation are found by 

a Newton-Raphson iteration coupled with a synthetic division operation. 

The six roots to this sixth degree polynomial are equal to k2. The square 

root of a complex number must now be taken to yield the wave number, k. 

The square root operation was performed by the subroutine XPOCPX 
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using the equation 

(a + ib)l'n - ( Jm)l'n {cos(F) + isin( 

where 

K = 1,. 2, . . . . n - 1, and I$ is the argument of the complex number. 

Taking the square root of the six complex numbers, we obtain twelve 

solutions for the wave number. Restricting our analysis to waves propa- 

gating in the positive x direction, we will have six wave numbers. 

kj = kRj + ikIj j = 1, 2, . . . . 6 

The other six will be same waves propagating in the negative x direction. 

Previously, the length and time units were changed from meters and 

seconds respectively to avoid an underflow or overflow condition. The wave 

number's dimension is l/length so it must be converted back to l/meters, 

The phase velocity for each wave is w/k where w is the applied frequency. 

The,damping characteristics of the wave is contained in the imaginary 

part of the wave number, kI . 

Results 

The solution was obtained using field parameters of a typical iono- 

spheric condition at an altitude of 320 kilometers at 450 North latitude 

and 90° West longitude. 

'ni 
= 1.1202 x low4 coll/sec w e = 2.8806 x lo7 rad/sec 

'in = 2.2541 x 10-l coll/sec 9 = 1.5731 x lo5 rad/sec 

V en = 1.3072 x lo1 coll/iec 'f,i,n = 8.5097 x lo2 m/set 

'ei = 5.7883 x 10' coll/sec 'e - 2.8158 x lo5 m/set 

Perturbation frequencies ranging from. 10 -5 to 10' radians/second 

were examined. As mentioned previously, there are six values of k which 
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represent waves propagating in the p0sitive.x direction, i.e. kR positive . . 

where k = % + ikI. Not all of the six mathematically possible solutions 

would necessarily represent physically possible wave modes. A value of 

k with a negative imaginary component would allow for an exponentially 

increasing amplitude of the perturbation with increasing distance from 

the source. A phase velocity plot of the approximated solutions of 

Tanenbaum and Mintzer (Fig. 4 of Reference 1) is presented as Fig. 1. 

This plot was obtained by Tanenbaum and Mintzer from 4 set of approximate 

solutions to the complete dispersion relation, each approximate solution 

valid in a given frequency range. From that analysis it appeared that 

there should be fourphysically possible solutions. 

At relatively high frequencies there-were, in fact, four physically 

possible solutions and two that were not physically possible. At low 

frequencies, however, there was a repeated root to the dispersion relation. 

This repeated root corresponded to a physically possible solution, leaving 

only one solution that was not physically possible. 

The phase velocities and corresponding e-folding distances of the 

wave modes which exhibit decreasing amplitude with increasing distance 

from the source are plotted in Figs. 2 and 3 respectively. The waves 

which exhibit increasing amplitude with increasing distance from the 

source are plotted similarly in Figs. 4 and 5. In these four figures, . 

both the horizontal and vertical axes are plotted on logarithmic scales. 

Some difficulty was encountered in constructing smooth curves for 

these solutions due to the fact that we were limited in the number of 

points. As described earlier, the complexity of the problem prevented 

us from obtaining a single dispersion relation valid for all frequencies.' 

Since the applied frequency was included in the input along with the 

atomospheric parameters, the FORMAC program solved for a dispersion relation 

good only for that particular frequency. 
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Phase Velocities 

As seen in Figs. 2 and 3 at low frequencies, w = vni, only three of 

the four possible wave solutions have relatively large e-folding distances. 

The fourth wave mode has an e-folding distance less than 10 -2 meters; 

therefore, at low frequencies it does not propagate. Mode 3, one of the 

three wave modes which is not damped out, has an extremely small phase 

vGlocity. Consequently, it appears that at low frequencies only two 

of the four possible wave solutions will propagate. Mode 1 has a phase 

velocity of Un, the acoustic velocity in the neutral gas, and mode 2 has 

a lower phase velocity. In the numerical calculations, Un and the acoustic 
, 

velocity in the ion gas, Ui, were taken to be the same. 

For vni < w < vin, wave modes 2 and 3 increase in phase velocity 

with increasing frequency. Wave mode 1 which propagates at Un for 

w = vni continues to propagate at this constant value for higher applied 

frequencies. In this range the fourth wave mode continues to propagate 

at a constant phase velocity less than Un. 

As w increases in range vin < w -z we, wave mode 2 increases to 

vi, the Alfv& velocity in a medium composed of a mixture of just the 

charged particle fluids, and then decreases to Un as w approaches wi. 

The phase velocity of wave mode 3 increases to a value well above the 

speed of light, c, as the applied frequency passes w i' As w nears 

w e the phase velocity of this mode decreases abruptly and approaches 

a phase velocity.of Ue. In the-range vin <w<w e the e-folding distance 

for this solution is small and this wave mode does not propagate. In 

this frequency range wave mode 1 continues to propagate at a phase 

velocity of Un as the frequency increases. The fourth wave mode starts 

to increase in phase velocity in this frequency range and has a phase 

velocity near c as 0 passes w i' The phase velocity of this mode increases 

past c in the range wi c o c we and then starts to decrease and approaches 
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c as w approaches we. However, as shown in Fig. 3, for the frequency 

range vni < w c we, this fourth wave mode has an e-folding distance 

less than 10e2 meters; therefore, for this mode there is no propagation 

of *the disturbance. 

For o > we, mode 4 has a phase velocity of the speed of light, 

mode 3 propagates at the acoustic velocity in the electron gas Ue, 

and wave modes 1 and 2 have a phase velocity Un. However, wave mode 

1 has an e-folding distance less than 10 -2 meters, and therefore does 

not propagate. 

These results will now be compared with the approximate solutions 

of Tanenbaum and Mintzer given in Fig. 4 of Reference 1 and presented 

as Fig. 1 of this paper. The points wol, wo2, and wo3 on the frequency 

axis in the results by Tanenbaum and Mintzer were added to Fig. 2 to 

aid in this discussion. The wave mode, which increases to a phase 

velocity of Un, i.e. mode 1, and continues to propagate at that velocity 

for increasing frequency, compares quite well with a solution found by 

Tanenbaum and Mintzer. 

Wave mode 2, in which the phase velocity increases to Vi then 

decreases, has the same shape as a solution of Tanenbaum and Mintzer 

for w > vin, since Un and Ui are assumed to be equal. In the range 

'in <W<fJl i' the approximate solution shows the phase velocity first 

increasing to V'a and then at wo3 decreasing to Up before finally de- 

creasing to Ui at wi. As shown in Fig. 2, the distance between wo3 

and w i for our calculations is quite small as compared to the distance 

between vin and oo3, also the value of Up is near,U . Even with the n 

very small region involved, mode 2 does appear to decrease to Up at 

wo3 and then approach Un at wi. Since we have taken TJi and Un to be 

equal, our result for w C w i agrees well with the approximate solutions 

of Tanenbaum and Mintzer. 
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In the region w < vln the approximate solution has a wave mode with 

a phase velocity of Va, the Alfv&.velocity, before it starts to increase 

to VL at vin. Our solution does not agree with this result in this region. 

The phase velocity for our corresponding wave mode, i.e. mode 2 as shown 

in Fig. 2 is much lower than the Alfv&.velocity. 

Tanenbaum and Mintzer show two other approximate solutions in the 

frequency range near w . e One solution decreases at wol, to a phase velocity 

of c and at w o, it begins to decrease again to a value of Ue. The other 

curve decreases at wo2 to c and the phase velocity remains constant for 

higher frequencies. 

From Fig. 2 we see that for our case we and o. are for practical 

purposes the same point and wol and wo2 are extremely close. Considering 

the very narrow frequency range involved, Tanenbaum's result compares 

quite well with modes 3 and 4 of Fig. 2. At wol both mode 3 and 4 have 

phase velocities well above c. At wol mode 3 first decreases abruptly 

and then has a slight tendency to level as the, phase velocity passes c. 

As the frequency increases the phase velocity decreases again before 

reaching a constant value of UeO The phase velocity of mode 4 begins 

its decrease slightly after mode 3 and it approaches a constant value 

of c for higher frequencies. 

e-folding Distances 

The e-folding distance is defined as the distance from the source 

of the perturbation at which the amplitude of the wave is damped to l/e 

of its initial amplitude, where e is the exponential factor. The solution 

for the e-folding distance to describe the damping characteristics of 

each wave mode was not obtained by Tanenbaum and Mintzer. Each of the 

e-folding solutions corresponds to one of the phase velocity solutions, 

since both quantities are taken from the imaginary and real components, 

respectively, of the same wave number, k. Note that corresponding 
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solutions are symbolized in the same manner on each graph. Fig. 3 presents 

the plot of e-folding distance versus applied frequency, 

The e-folding distance, corresponding to wave mode 1 in which the 

wave propagates at Un, did not form a continuous curve. The points 

indicate a curve in the general shape as shown, but a smooth curve could 

not be drawn. It appears that for QI < vin mode 1 is essentially undamped. 

The e-folding distance,of this mode decreases with increasing frequency 

for w > vin. 

Wave mode 2, in which the phase velocity increases to Vl and then 

decreases to Un, has an e-folding distance that at low frequencies first 

decreases with increasing frequency. At a point between vni and vin 

the e-folding distance starts to increase and reaches a maximum as the 

phase velocity approaches V'ae At wo3 when the phase velocity starts 

to decrease the points on the e-folding distance plot become scattered. 

No attempt was made to draw a curve through these points. 

Wave mode 4 has an e-folding distance less than 10 -2 meters for 

the range w c w . At we the e-folding distance increases abruptly e 

indicating that for this mode a disturbance does not propagate except 

for frequencies above we.. 

The remaining wave mode, mode 3, has a high e-folding distance 

for frequencies below vni, but the phase velocity in this range is 

very low. The e-folding distance decreases and the phase velocity 

increases as the frequency is increased. At tio3 the e-folding distance 

increases to 10 meters and remains at this value until the frequency 

nears w . At this point the e-folding distance increases to a significant e 

value and the wave mode is essentially undamped for frequencies w > w . e 

Both of these latter wave modes, mode 3 and mode 4, have frequency ranges 

in which the phase velocity increases above the speed of light. However, 
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in these ranges the corresponding e-folding distances are small and the 

two waves are damped out. 

Exponentially Growing Wave Modes 

Figs. 4 and 5 contain the phase velocity and e-folding distance plots 

of the wave modes which exhibit increasing amplitude with increasing 

distance from the source. At low frequencies there is only one-mode with 

a negative e-folding distance. The phase velocity for this mode increases 

with increasing frequency from a value below Un at the lower end of the 

frequency spectrum until it approaches the speed of light. The phase 

velocity then remains constant at the speed of light for increasing 

frequency. The e-folding distance for this mode starts decreasing in 

magnitude from a large negative value at low frequencies. Near vin the 

e-folding distance begins to increase in magnitude and continues to increase 

with increasing frequency. Near an applied frequency of 10 radians/second 

another mode appears with a negative e-folding distance. This wave mode 

has a constant phase velocity of Un for increasing frequency. The e-folding 

distance for this wave mode when plotted did not form a smooth curve and 

was not included in Fig. 5. 

Ckn:.lusion 

Complete solutions were obtained for the dispersion relation, based 

on the three-fluid plasma model, which governs the propagation of small 

perturbations normal to the applied magnetic field. The waves investigated 

were coupled longitudinal and transverse waves. A pure transverse wave 

can propagate normal to an applied magnetic field, but this case was not 

considered in this analysis. The solution for the complete dispersion 

relation governing coupled longitudinal and transverse wave propagation 

with no approximations made is advantageous because it gives the complete 

description of the wave propagation across the entire frequency spectrum 
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considered. The resulting wave numbers consist of both real and imaginary 

parts which describe both the phase velocity and damping characteristics 

of each solutipn. 

Obtaining the solution without making any approximations was made 

possible by use of a computer method to carry out the extremely large 

number of algebraic manipulations involved. These operations, accomplished 

by the PL/I-FORMAC interpreter in an IBM 360-40, could not have been per- 

formed manually. 

The approximated phase velocity predictions made by Tanenbaum and 

Mintzer agree in most of the frequency ranges with our solution considering 

the limited number of points on the frequency range. Although Tanenbaum 

and Mintzer obtained approximated phase velocity results, they did not 

solve for the e-folding distances of the wave modes. Besides obtaining 

a complete numerical solution to the phase velocity over the entire 

frequency range, this paper presented an analysis of the damping charac- 

teristics in the form of the e-folding distance. Atmospheric conditions 

were chosen in this analysis but now that the method has been shown to 

be valid, any three-fluid problem of coupled longitudinal and transverse 

wave propagation normal to the applied magnetic field could be solved 

by using this approach. 
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APPENDIXA 

SIMPLIFIED FLOW CHART OF FORMAC COMPUTER PROGRAM 



PLASMA PARAMETERS 

APPLIED FREQUENCY 

LENGTH AND TIME 

CONVERT UNITS ON FREQUENCY 

AND VELOCITY TERMS ACCORDING 

TO LENGTH ,AND TIME DIMENSION 

FORM EXPRESSIONS FOR 

C TERMS 

I 

SUBST1TUT.E C'S INTO 

DISPERSION RELATION AND 

EVALUATE PARAMETERS 

EXPAND AND COLLECT COEFFICIENTS 

OF POWERS OF k 

PRINT AND PUNCH 

COEFFICIENTS 

25 

i 



26 

APPENDIX B 

LISTING OF FORMAC COMPUTER PROGRAM 
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EXGIT 
YAP 0017-01/l+14:36 
START=0104631 PROG SIZE(1/C)=3919/2170 

READ : GET OATA; 
/* RCLilIhE TO CHANGE TC APPHOFRIATE UNITS OF TIpE AND LENGTH. *:/ 

i . 

,IF FACTIIVE=O Tt;EN cc TC SAME; 
.IF FACTICE= ThEk GO TO DESI; 
.l,F FACTIIVE=2 71-Ek GO TO CEbiTI i 
,IF FACTLIVE= ThEh GO TC IJILLI; 
,IF FACTICE= Tt.EI\ GO TC VIkUS4: 
,IF FACTICE= Tt:Eh Go TC VIkUS5; 
,IF FACTIh’E=6 TbEh‘ GC TC !JICRO; 
,IF FACTICE= TF;Eh GO Tc h’Ikbs7; 
,IF FACTIPE=8 TtiEh GO TC r~IhUSf?i 

GESI: REh=REh*l.UE-1: nE=fiE*l.OE-1; ~I=ivI*1.O~-1I VEI=VEI*l.OE-iI 
VEh=VEh*l. LIE-1 ; VIR=VIK*l.OE-1; VbiI=VhI*l.OE-1; UE=UE*l.OEA1t 
UI=UI*l.OE.~li lJK=Lb*l.OE-1I CL=CL*l.OE-1; 

GC TO SAVE; 
CE.hTI:kEC=REk*l.DE-2; nt=hE*l.OE-2; kI=?uI*l.OE-21 

VEh=VEh*l.k;E-2; 
VEI=VE1*1.OE'22 

vlh=Vlh*l.OE-2; VhI=VhI*l.OE-28 UE=UE*l.OE-21 
LI=UI*l.OE--2; Uh=Lh*l.OE-2; CL=CL*l.OE-2; 

GC TO SAVE; 
k'3LLI: REW=REh*l.OE-3; k,E'WE*l.OE-3; WI=hI*l.OE-3; VEI=VEI*l.PE-38 

bEh=VEr\*l.tiE-3; vlh=VIk*l.OE-3; VhI=VhI*l.OE-3; .UE=UE+l.OE-32 
l,I=l~I*l.oE-3; Uh=Lh*l.OE-3; CL=CL*l.OE-31 

GC TO SAVE; 
YIMJS4: REh=FiEh*3.6E-41 kE=hE*l.OE-4; wI=WI*l.OE-4; VEI=VEI*l.OE-4I 

VEh=VEh*l. (:E-4; V1h=VIh*l.OE-4; VNI=VhI*l.OE-41 UE=UE*l.OE-4; 
LI=UI*l.OE-4; Uh=l,h+l.OE’4i CL=CL*l.OE-4I 

GC TC SAVE; 
vIbiUS5: REk=REh*!.OE-5; kE=kE*lrOE-5; WI=hI*l.OE-5; VEI=VEI*l.OE-SI 

VEh=VEh*l.t,E-5; vlh=VIN*l.OE-5; VhI=VhI*l.OE-58 UE=UE*l.OE-5; 
LI=UI*l.OE-5; Uh=Lh*l.OE-5; CL=CL*l.OE-5; 

Cc TO SAME; 
VICRO: REW=REh*l.OE-6; hE:hf*l.OE-6; WI=CI*l.OE-6; VEI=VEI*l.OE-6I 

bEh=VEh*l.bE-6; VI~=VIh*l.OE-6i VhI=VhI*l.OE-6; UE=UE*l.OE-61 
k1=UI*l.OE-6; lJk=Lh*l.OE-6; CL=CL*l.OE-6; 

GC 1C SAKE; 
b'I,h,US7: HEIU=REh*l .OE-7; hl:=kE*l.OE-7; hi=hI*l.oE-7; VEI=VEI*l.OE-71 

,VEh=LEh*l.OE-7; VIK=VIh*l.OE-7; VNI=VkI*l.OE-7; UE=UE*l.OE-7; 
UI=Ll+l.OE-7; Lh=uh*l.qE-7'; CL=CL*l.uE-7; 

CC TC SACE; 
b! Ih.U!X ; kEu=HEhr*j .6E-8; kE=hE*l.OE-t?; WI=kI*l.OE-8; VEI=VEI*l.OE-8;. 

VEk=VEh*l.OE-8; VIh=vIh*l.OE-8; VhI=VhI*l.OE-8; LE=UE*l.OE-8; 
'bI=LI*l.OE-8; Lk=Uh*l.gE-8; CL=CL*l.OE-8I 

GC TC .SAYE; 
SAPE : IF FACLEI.=O Tt-Eh GC To OKAY; 

IF FACLEI,.?l TF-Eh GC TO PlO; 
IF FACLEr<=P Tl-Eh GO TC Cl00i 
IF FACLEI\=Z Tl-Eh r,O TC Kb’: 
IF FACLtb.=4 TI-ti\ GO TO ClOTC4; 
IF FACLtl.=E Tl-th GC TO ClOTOSr 
1F FACLtt,.=t Tl-an GC TC VEGA; 
IF FACL&I;=- 1 Thfrh C-C TC CECIlj i 
IF FACLtl.=- 2 T~-.kh GC TC CEhTI1J i 
1F FACLtir =-3 'It-tl\ GC TO b'1LLIb'f 
1F FACLLI .=-4 Ttir\ GC TO hEG4,i 

hEG4 : bk=LE*i.OE+4 ; LI=LI*l.OE+4 i Uh=ul\*l. OE+4 i CL=CL*l.OE+4 8 



CC TC OKAY i 
MILLIb’: UE=UE*l.OE+J i LI=UI*l.OE+3 ; UN=UN*l.OE+J 8 CL=CL+l;@+3 I 

GO TC OKAY ; 
CENTIV: UE=UE*l.OE+E ; LI=UI*l.OE+2 i UN=UN*l.OE+2 i CL=CL*leOE+2 ; 

GC TC OKAY ; 
IJECIb'.: UE= UE*i.oE+l i UI = UI*l.OE+lI UN=Uti+l.OE+l i CL=CL*l.OE+l’ i 

GO TC OKAY ’ 
vlo:‘ UE=UE*;.OE-1; UI=UI*l.OE-1; Uk=Uh*laOE-1; CL=CL*l.OE-1; 

GC To OkAY; 
y100: UE=UE*l.OE-2; UI=!JI*l.UE-2i Utt=UN*1.0E-2; CL=CL*l.OE& 

CL! Tc OKAY; 
KM: UE=bE*l.OE-3; LI=UI*l.OE-3; Uh=Uk*l*OE-3; CL=CL*l.OE-31 

-GC f0 OKAY; 
YlOTC4: UE=CE*l,OE-4; LI=UI*l.OE-4i Uh=Uh*l*OE-4; CL=CL*leOE-41 

GC TO OKAY; 
rlbTC5: UE=UE*l.OE-5; LI=LI*l.OE-5; Uh=Uh*lrOE-58 CL=CL*l.OE-5; 

Gc To OKAY; 
MEGA: UE=UE*l.OE-6; bI=UI*l.ClE-6i Uh=Uh*l*OE-6i CL=CL*laOE-68 
OKAY: /* CHANiGIhG PL/l ‘JARIABLES To FOHKAC VARIABLES */ 

LET( kE=‘;~E”ihI=~~I*iUh=*U~~;UI=~~I~iUE=*UE*; REs = *kEW’ i 
VE~='Vth*;VEI=*VEI'iVI~='VIk'iVhI='VNI'i 
CE='IE~iVI=*~I,iH=*hI;CE='CE';CL='CL(; 
hE='hE'i~.~~=*h~riLI~IT=*LI~IT~)i 

/* L;M:I;IEQUA;ICbS NkkCEC To HUN PROGRAM EFFICIENTLY */ 
= hti K=P/I/VEi 

VIE =(\EI*hE)/(v*hI)i VNE =(vEN*~E)/(Y*N~J); 
VE =VE:+VEhi VI=VIE+VINi Vh=VhE+VhIi 
l.ESQ=Lt **2; LIS!J=lJI**2i lJNSQ=Uh**E i 
LuESQ=ht **2 i *ISG=kI**2i > cLsG=cL+*2I 
csG=lv*oPi VCL= 'J**ji CTSG=CT**Ei 
kT~u=k;S~**2; k,LS(;=kL**2 i k4LOb:ILSQ**E i 
kSQ=~++Z‘i L:CL=A*kSQi WGUAC=tiSQ**2i 
kt2kiT2= issG*bTS~ i 
Li2v~L2 z hSG * b)LsG i 
h4kT4 = h2hT2**2 i 
h4rlL4 :: k2kL2**2; 
b 4 h T L 2 = wJUC;UAC*k rSQ*kLSQ) i 

VIE = ARITHtVIE); 
VhE = AHITh(ui<E); 
NI = ARI'TH(hI) i 

/* FGIhT OUT LASIC FIt;LC PARAKETERS AhO IW'UT CAfA */ 
FUT LIST('COVPLETE TbRtik-FLbIC THEORY CISPERSIOh EQUATI6N')PAGEI 
PUT ECIT('kAGhE-iIC FIELL; STHENGTh = ‘,Hv’ kEbERS PER SQ. METER’) 

(SKIP(6),krE(12rS),A); 
FUT EL.iT(‘PLASb’/: FHEGljkhCY OF ELECTROhS = ‘,hE) (SKIP(l)rAtE(12r5))I 
PUT EC17 (‘PLASiJfi FREotiil\CY CiF ICtxS = ',\\I) (SKIP(l)vAfE(12,5))i 
PUT ECiT('COLLIsICk FRtrtiLERCY CF ELECTROkS k;ITH IChS = ',VEI) 

(SKIP(l:vP~E(l2p5))i 
PUT ECIT(~coLLIs.:Oh FfiEl;t,EhCY OF ELECTRONS WITH NEUTRALS = ‘rVEh) 

(SKIF(~:*A~E(~Z,S)); 
FbT ECIT('CCLLIS~U~ FI<ECLE\CY OF IOhS hITh ELECTRchS = ‘rVIE) 

(SKIP(l)rAtE(lZ,E))i 
PUT EClTt’COLLjSICh FlctCiEhCY Ci IONS WITh NEUTRALS = 'rVIk) 

(SKIP(litA~E(lZ,E))i 
‘FlaT ECIT(‘COLLISiOh FHEbLE;‘\CY OF NEUTRALS. wITki ELECTRCNS = ‘@VhE) 

(SKIP(l;rP,E(lE,b))i 
PUT ELlT('COLLISICh FRklsLE:\CY CF kEUTRALS ,uITtl IOhS = 'rVhI1 
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PUT ECITt’ELECTRON SOUNU VELOCI.TY = ‘*UEn METERS/SECCNOO 
(SKIP(l)rA,E(12,5)rA)I 

PUT ECIT(‘ION SOUND VELOCITY 
(SKIP(lIvAvE(12rS)~A)i 

= r,lJf,“ METERS/SECOND;! 

PUT ECITt’hEUTRAL SOUND VELOCITY = ‘;UN,’ METERS/SECOND’) 
(SKIP(lI~AvE(l2,5I~A)i 

PUT ECITt’ELECTRON fxUMEER CENSITY ='rNEt'NUMGER PER CUBIC METER’) 
(SKIP(l),A,E(12rS)rA)i 

PUT EOITt'ION NUMBER DENSITY,, ='~NII'NUKBER PER CUBIC METER') 
(SKIP(l),A,E(12,5,),A)I 

PU, .’ T(,NEUTRAL Nbb’BER DENSITY =‘iNNv’NUMBER PER CUBIC METER')., 
(SKIP(l)tAtE(12v5)~A)i 

/* RELA.TIONS TO ShORTEN RUN TIME */ 
LET( SUB1 = WISQ*Vh; SlJB2 = wESQ*VNI 

SUB3 = VE + Vhi SUB4 = VI + VNZ 
SUB5 = (VE*VN)-(VEN*VNE) I 
SUB6 = (VI*VN)-(VIN+VNII I 
sue.7 = (VEI+VNI+(VEN*VNI) i 
SUB6 = wcL*cLsG i SUB9 = WQUAD*CLSQ Ii 

/* GETAIN EQUATIONS FOR iuST ThE NUMERATORS OF THE C'S 
SIhCE THE OENQMINATGR WILL BE MULTIPLIED OUT IN THE 
FIhAL DISPERSIOh RELATION. THE FORM OF THE EQUATION 
IS AS FOLLOWS: 

C(I) z. A(I)*Kt*u + B(f)*K*42 t D(I) */ 

LET( iii,’ = 0.0 i 
= 0.01 

A(3) = UISG*UhSQi 
A(4) = 0.0: 
A(5) = UESG*UhSQi 
A(6) = 0.0; 
B(1) = -(wESQ*U~SQI + (~~I*w*vEI*UNSQ) i 
et21 = -(WSQ*CLSG*SU871 + (#I*wCU*CLSQ*VEI) i 

B~:d~(wISQ+LNSG)-hSQ*(~NSQ+UISQ)-(WI*W)*(VN*UISQ+VI*UNSQ); 
= IwSG*CLSG*SUt!6)-(SUB9)-(#I*SU6El*SUB‘b~~ 

., 8(5)=(wESQ*CNSG)-kSQ~(~~SQ*UESO)-(#I*W)*(VN*~ESQtVE*UNSQ)~ 
a(6) = (hSQ*CLSQ~~SUU5)-(SU@9)-(#I*SUBB*SUB3); 
D(l) = kSG*(hESG+SUU7)+ #I*(w*SLE2-bCU*VEI) i 
C(2) = irSC* C(1) i 

C(3)=wQu4D-hSQ*(WSSQiSU66)t #I*(wCU*SUBr-W*WISQ*VN~~ 
C(4) = WSQ * C(3) ; 

P~~~~wQUkC-~~SQ*(kLSQ~SU~5~+ #I*(wCU*SU83+*WESQ*VN): 
= 'ruS() * C(5) Ii 

/* CENOUIh4TORS FCR C'S */ 
LETt CDEW(1) = (-UNSG*K**2) + (WSG+MI*w*VNI i 

CCEW(2)=I-wSQ*CLSG-PI*w*CLSG*VN)*K**2 + (wQUAD+KI*WCU*vNII 
CDEW(3) = COEW(11 i 
CDEW(4) = CCEM(2:: i 
CCEM(S)'= CCEY(1) i 
CCEM (6) = CDEM.(E) ' 

/+ EGUATIOhS FOR C*S kITl?dJST THt hlJKEHATOR */ 
EGS : CC I=1 TO 6 E!Y 1 ; LETII=‘I’)i 

LETI C(I) = A(I)*K**4 + Ej(I)+K**2 + C(I) Ii 
ATOYIZEt A\(I); ti(I)i i;(I) 1; - 

EhC EGS; 
/* FREPAGIhG Tc Ck!TAIh EACH TERN CF CLSPEHSICh RELATION 
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AS FUNCTION OF k,kTeB kL. 
Xh EAC,H TERF/ TO t’AKE PROGRAM CCRE EFFICIENT. 

COLLECTING LIKE QUAhijTIES 

LET{ ClSQ = C(l)**21 CQSQ = ct21**2t 
C4SQ = C(4)**2i C6SQ = C!6)**2t 

,ClC2 = c(l)*c(;z)t c3c4 = C(3)*cd(4)t 
c3c5 = c(3)*c(5) t C3C6 = C(3)*C(6); 
c4c5 = cIIo*c(<) t 64C6 = C(4)*C(6); 
CYC6SQ = C4C6**2t C5C6 = C(5)*C(6) t 
C2QU = c254**2 t ClOC2r.l = COEM(l)*CDEC(2)t 
c2osGl = CDEM(2)**2t- c10c20cu = C1GC2C*CEDSQ t 
ClCPCSU = c1cc2c**2t CPDQUAD = C2CSQ**2 )I 

/* fNCIVICUAL TERtJS CF DISFERSION RELATION a/ 
CPTSET(NCEXPhD)t 

LET (TERM(l) = C:lSQ*C2SG t 
TEAK(P) = ClCC2CI*ii.O*kSQ*kTiiQ*ClC2 t 
TEHiY(3) = -M*ClSQ*C4C6 t 
TEkC(4) = -M*C2SC*CZCS t 
TERM(S) = ~sG*c3c4*cx6 t 
TLRw(6) = -ClOC2C*vSG*wSQ*kTSQ*C3C4 t 
TEHb! (7) = CICECSQ*HGUAC*WTQU t 
TEhV,.(B) = ~ClDC2C*hSQ*~~TSG*CSC6 1; 

/* ATCYIZIhG VARIEBLES hC LOhGER NEECEC. */ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

CYC6SQtC5C6tC2G~tC1CC2DiC2DSGiC1DC2~CUtClC2GSQt 
CPCQUAC i t 

OPTSET(EXPhD)t 
REkT = (CE*h)/(CE) t 

/* ThE FOLLObvI!\G ChAhGES REbT TO CORRECT UNITS OF TlME */ 
',I,F FACT ItrE=O THEh REkT=EEhTt 
ELSE IF FAC,TI~J~I=~ THEh FEbT=REkT*l.OE-1 t 
ELSE IF FACTIVE=2 THEh kEhT=REkT*l.OE-2 t 
ELSE IF FACTrIVE= THEh k'EhT=REwT*l.OE-3 t 
ELSE IF FACTIME=4 THEi\ FEkT=REhT*l.OE-4 t 
ELSE IF FACTIKE= THEll FE*T=REhT*l.OE-5 t 
ELSE IF FACTIb'i=O THEh HEhT=HthT*l.OE-6 t 
ELSE IF FACTIYc‘=? ThEh FEhT=RkhT*l.OE-7 t 
ELSE IF FAC,TIIJE=~’ ThEh FEhT=REbvT*l.OE-8 t 

LET (REkT=‘ldE\iT’ 1 t 
OFlSET(NOEXFii\GI\ t 

TERb’S: Go I=1 TC 6 dy 1 ; LET(I='IOt 
LET(FTERM(I) = REFLACE(SERV(I)rWTrHEnTlkrREk))i 

EAC TERMS t 
LET (CISPEH=O,O) t 

CPTSET(EXPhC)t 
00 I=1 TO 8 BY 1 t LET(I=‘I’)t 

LET(CISPER=LISFER+FTtRt'(I))t 
EhCt 

LET( FACilrJE = ‘FACTIIVE’ t FACLEN = (FACLEN’ ‘1 t 
/* kCn GET COEFFICIEhTS OF K Ih FORY TO f3E FLNCHED OLT */ 

LtT( 2 = hIGHFCh(CISFERvK) t 
X = LCbPCk (CISFl:t?vK) 1; 

KCCEF : co I = 2 TI) 12 dy 2; LtT(I='lOt 
LET( COEFK(1) = CCEFF(CISPkReK**I) t 

COEFKIiI) = CCtFF(CCEFK(I)rti,I) t 
CCEFKbiI) = CCtFK(I) - #I*CCEFKI(I). )t 
Ehii KCOEF t 

:.. ..: . 

18 Fbf Ih COhSTAhT TEtib CF CISPERSIih’i~LAT10N AS CCEFKJO) 9/ 
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LET( L 
COE=FKoiV = REPLACE(DISPEReKeL) t 
COEFKI (0) = CCEFF(COEFK(O)r#I) t 
COEFKG(Oj = COEFK(0) - tlI*COEFKI(O) It 

/* PLhCh OUT ALL REAL AhC IMAGINARY COEFFFICIENTS OF EACH 
PCkER CF Kv STARTIhG 'H~ITH HIGHEST POWER* */ 

XqUt+iCh : CO I= 12 BY -2 TO Ot LET(I='I')t 
LET( COER=CCEFKR(I)t # 

COEI= COEFKI(1) It 
PLCOER= AHITH(COER) t 
FLCOEI= ARITk'(COE1): 

F’.UT FILE(SYSP~CH)EOIT(PLCCER) (SKIPII)vE(lJ~S))t 
P.U.7 FILk(SYSPNCh)EDIT(PLCOEI) (SKIP(l)rE(lJeS))t 

E,kC XPl,,NCti t 
/* CISPERSICF; RELATIC% FOR Tt+E GIVEN VALUES OF 

IhFLT VARIPBLESvWT~AYD lu */ 
REk=lO.O*REb t 
LET(REW=‘REb’) t 
IF RkWC= LIPIT Tl+EK 63 TO TERWSt 
CC Tc REACt 
QLIT: PUT l.IST(' SE’: CTHER SIDE') t 

EhD 0ISRE.L t 
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APPENDIX C 

SIMPLIFIED FLOW CHART OF POLYNOMIAL 

ROOTS COMPUTER PROGRAM 
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C6EFFICIi3iTS OF DISPERSION 

' RELATION, AZPLIED FREQUENCY,. 

LENGTH AND TIMi DIMENSION, FACTOR 

COEFFICIENTS * FACTOR 

DEGREE OF EQUATION = 6 

no 
V 

NEWTON-RAPHSON 

ITERATION TO SOLVE FOR ONE ROOT 

OF THIS DEGREE EQUATION IN k2 

- 
I CALL XPOCPX 

I 
w 

PHASE VEL. = u/kR 

e-FOLDING DIST. = l/kI 

WRITE RESULTS 
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-I 

CALLSYNTB 

,FACTOR ROOT FROM EQUATION 

BY COMPLEX SYNTBETIC DIVISION 

DEGREE i DEGREE -1 

. 

I. 
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APPENDIX D 

LISTING OF POLYNOMIAL ROOTS COMPUTER PROGRAM 



4000 
4 KR~5~rKRE~~~~KI~5~,KI#orPHSVE~S)rEFOLC~5~~FACT 

REAC(5~1061 k,LEh,TykEvFAC 
,IF(LEh.EO.g 3) GO TC ZOO 
mREAC(5v201) FACT 

201 FCRtJAT (LB.. 1) 
CC 420 X=1,14 
REAC(Se129) A(I) 

129 FCRCAT(C16.3) 
420 COhTIhUE 

kHITE(6rlO") k,,FACvLE:NvTYME 
co 20 1=1r7 
kRIlE(beli:) A(2*1-1:eA(2*1) 

113 FORVAT(2E1:.5) 
20 CChTItcUE 

CO 197 I=ltlY 
A(I)=FACT*P(I) 

197 CChTIhUE 
hRIlE(6r16t) FACT 

166 FCRCATI’O’rt ACbUSTtT! COEFFICIENTS FAcTCR=‘rDB.l) 
CC 67 1=1r-! 
hRITE(brl6;) A(2*I-ljtA(2*i) 

167 FCRPAT (2ElI r5) 
67 CGhSIhUE 

2 

950 

951 

952 

953 

954 

955 

956 
560 

K=6 
REAL(SrlOlj BiiEltiItJ 
IF(BRE.Er;.~g99g.UO.A’~C.i3IK.EQ.99999.i;O) GO TO 300 
kHITE(6rlOi ) EHEIB~F 
h = 1 
IF(K.EG.8) GO TC 950 
If(K.EG.7) GC TC 951 
IF(K.EG.6) GO TO 952 
If(K.EQ.5) GC TC 953 
IF(K.EG.‘+) GG TC 954 
IF(K.EG.3) GC TC 9Sk 
IF(K.EQ.2) GC TC 9% 
CALL ElGhTh~ER~~6I~,A~FHTIFIfrFPHT,FPIT~~~L~ 
GO 10 960 
CALL SEVEN(B~E~@I~,P,FHTIFIT,FPRT~FP~T~~~~L) 
GO IO 960 
CALL SIXT~!bHE,eIV,~rFRT,FIT~FPRT~FPlT~M~L) 
GO TO 960 
CALL FIFTh(hFEtEItJ,P eFHTvFITeFPRT,FPlT,~.,L) 
GC -IO 9bo 
CALL FO~RTr(~HE,UI~~rA,FRT,FIT,FPRT,FPRT~F~IT~i~~L) 
GC TO 960 
CALL ThIRC(~~t,CIC~k,FRT~FLTIFPRfrFPITIV,L) 
GC TO 960 
CALL S~CCI\3(kR~vbIi~sArFRTrFiT~FFRT~FFIT~~ PL) 
FfiE= 0.0 
Fir= 0.G 
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co 15 1=1rr/ 
FHE = FRE+FRT(I) 

15 

16 

6 

4 

17 
280 

90 

FI)/ = FICtFIT(i) 
CchT IFSUE 
FPRE= 0.0 
FFI)r= 0.0 
CC 16 I=lrL 
FFRE = FPREiFFRT(I) 
FFIF = FPIvtFPIT(1) 
COhlIhUE 
hUCHE = (FRE*FPRE) t (FIY*.FPIW) 
hliPIr/ = (FIIJ*FPRE) - (FRE*,FPIM) 
IF(hUb’RE.EG.O.CO.Ah~.MJ’4Ib!~EQ.O.C0) GO TO 4 
IF(FPRE.EQ.o.CO.OR.FPI~J.EQ.O~CO) OEK= (FPRE**2)+(FPIH**2) 
IF~FPRE~EG.o~CO.OR.FPI~~EQ~O~DO) GO TO 6 
CEY = (FPRE**2)*(l.COt(FPIb'./FPRE)**2) 1 . 
IF(FPRE.EG.~.DO.A~~D.FPIM*EG.O.DO) WRITE(6rl02) 
IF(FPRE.EG.o.C~.A~G.F~‘IM~EG.O.~~O~ GO To 2 
FHE = NbWRE/CEV 
Fib' = M.ddIfJ/CErJ 
ERE = DHE-FHE 
EIP = OIY-FI?’ 
h:= Ntl 
IF(h.GT.300) GO TC 4 
IF(K.EQ.BY GG TO 950 
IF(K.EG.7) GO TC 951 
IF(K.EQ.6) GO TO 952 
IF(K.EG.5) GO TO 952 
IF(Ka.EB.4) GO TC 954 
IF(K.EG.3) GC TO 952 
IF(K.EQ.2) GO TC 95fz 
EHRGHE = 0.0 
ERACIb' = Oeo 
LO 17 1=1,lv 
EHRCHE = EtiRGHEtFRT ( I) 
ERRCIlJ = E3!-?CIV+FIT(I) 
CChT IhUE 
hRITE(6,lOJ) @RE,uIF~ERROREIERROICIN 
CALL XPCCF%(~,~,~REIRI~~KHIKI) 
co 90 1=1r2 - 
KHE(I) = Km(I)*(lO.+*(-LEN))/FAC 
KIY(I) = KI(I)*(lO.r*(-LEN))/FAC 
FhSVE(1) = k/KHE(I) 
EFCLC(1) = l.O/KIb'(l) 
ivRIlE(6,110) KH(I),hI(I) 
kRITE(6,112) KRE(I),KI~(I),PHSVE(I)~~FOLC(I) 
CChTIhUE 
K = K-l 
IF(K.EQ.1) GO TC 95'7 
IF(K.EO.0) GO TC; 44~10 
CALL ~YtsCV(A~~HEv~Il~rK) 
Kc=K+2 
Co 7000 I=lrKd 
*RIlE16~115) A(2+1-i)rA(2*X) 

7OGO CChTIhUE 
GC TO 2 

957 A(1) = A(1) 
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Al21 = Al21 
Al31 = Al31 t lBRE*All)-@IW*Al2)) 
A14) = A(4) t lRI~*All)tE?RE*Al2)) 
BHE =-1Al1)*A13)+A12)*A14))/0**2tA~2)~~2) 
f3IW z 1Al2)*A13)-A11)*A141)/0**2tA121~*2) 
ERRCRE=OeO 
EHRCIb'=O.O 
h=l 
GC To 280 

100 FORtrAT lk13.6) 
101 FCRFAf12C15.7) 

102 FCRFATl’,***** .jZERIVAT.IVE,OF F(X)=0 +**** ') 
103 FCRPATl’O”’ ROOT = “‘2014m6” -ERROR = “‘2019.6’ 

3‘ ’ RUrf3E.R OF ITLRAT,IOlrjS PERFORMED = “13) 
104 FORIATl’-‘r’ INITIAL ESTIMATE = “2014..6) 
105 FCWATl'l"'RbCTS OF. THE DISPERSI,ON' RELATION BY A NEWTON-RAPHSON 

1 ITERAT1Oh~TEC~KICU~ kITI+ SYNTH CIVISION’/‘qr”APPLIED FREQUENCY 
C="Cl2.6' 
2 ’ LEhGTh CIYENSICh =‘rF3.1”*10**“12” PETERS ’ 
1' TI'KE ~ICEKSICh = 10*+-"12" SECONDS’/’ 
1 ‘0”’ DISf’ERSIOh RELATIOh COEFFICIENTS ') 

106 FOR~ATl015.7'2I2'F3.1) 
110 FCRCATl’O’r’ K= ’ ’ 2D14.6) 
112 FGRCATl’O’r’ \rAVE hUlvfjER = “2Cl4.6” l/b’ETERS ‘1’0” 

i 
‘PHASE vFLCCITY = “D14.6” E FOLCINC DISTANCE = 0 
C14.6) 

115 FCRCATl2E13.t) 
300 STCF 

EhC 

SUDHOUTINE ATkLTFlh’X) 
C USEC To AKRAhGE TERb’S OF EQUATION IN ASCEhDfNG ORDER. 

OCLBLE PRECISICh Xl50)‘TEKP 
co 20 1=1rrk 
IPl = It1 
CC 20 J=IPlrb 
IF(CABSfXlI)).LE.CAUS(XlJ))) GO TO 20 

TX::7 
= X11) 
=x(J) ? 

Xlu) = TEb’F 
20 CChTIhUE 

RETURh 
EhL 

SUEROUTIhE X~CCFXl~,N’A’e’XR’XM) 
C THIS SUBRCUTIhE CALCULATES ThE v/h:TH ROOTS OF A COYPLEX 
C AUFBER OF ThE FCRb’ ‘c = A t I*R'. 

DCLELE PRECISICh A’ B’ BAR’ BETA’ CGEF’ K’ PI’ RC’ RN’ 
1 XHl25)’ ALFA’ T’ Xb’125) 

CCLtaLE PRECIC,IO~~ AA’BE 
AA=CABSlA) 
EB=CAESlB) 

=Jy 
!% = h 
FJ = 3’1415926535@979324CO 
IFlAA.EGaO.DG.CR.Eb.EG-O.DuI BAR=DSGdTlA*r2t@yM21 
If~AA.EG.O.~O.OR.Eti.Ec.O.C0) GO TO 101 
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@AH=OABS(A)*CSGRT(l.C~t(f!/A)**2) 
IF(li.LE.l.C-,521 GC TO 101 
IF(CAbS(DLCG1O(AA)-LLCGl~(~B)).LE.4.~O)~AR=DSQRT(A**2~ 

1 u**21 
101 CCEF = BAR*+ iRlu/Rtv) 

1 = CATAN2tLrA) 
IF (6 .LT. u.OCO) T = 2.OOO*PI - CABS(Tt 
K= o.oco 
co 100 1=1rF( 
EETA = 1 + Kc2*0C;O*t-I 
;bLF;;BETA*R1 ‘Rh 

= CCEF%CiCS(ALFI 1 
m(I) = CCEF+CSIK(ALF~) 

100 K = K + l.Ocl, 
RETLRh’ 
EhL 

SL'EHCblIE;E SYNCV(ArEkE eEcW#K) 
CCLELE PRECI’iICR A (20? r61tkrt3IM 
a~ = 2*(K+l)t>i 
DO 100 I=Jlc;?P 
A(1) = A(1) 
A(2) = A(2) 
A(I) = A(I) .b (@RE*A(l-2!-~I~+A(I~l)) 
A(It1) = A(I+l) t (bIP*A(I-2)+8RE*A(J-l)j 

100 CChTItdE 
RETLRh 
EAC 

SMHOC;TINE S~~CchU(eRE,OI~/,AIFRT,FIT~FPRT~FPIT~~~L) 
COLt!LE PHECI’;ICh Etit,E IWrA120) rFHT(20) rFlTl20) rFPR7(20)rFPIT(20) 
FHT (1) = A(1,*(8RE*+2!-A(l)*(61~**2) 
FR: (2) =. -A(.l)t2.O+kRt *GiY 
FAT(J) = A(3’*ERE 
FHTtIo = -A(,:)*OIIV 
FRT(5) = A(51 
FIT(l) = A(1 .*k.O+dhE*YIV 
F1‘1(2) = A(2,*(~R~*+2:-A!2)+(BIY**2) 
FIT{31 = A\(3l*tIIJ 
FIT (4) = A(4 i*bfiE 
FIT(5) = A(6: 
FPRTIl) = 2.yb*b(1)*~Rt 
FFE712) = -2 :OtA(2)+Bl* 
FPtiT(3) = A(.!) 
FPIf (1) = 2.J*P(1)*hIF 
FPIl(2) = 2.11*p (2)+bHt: 
FPlT(3) = At&t) 
CALL ATkLTF (i> CF HT 1 
CALL ATkLTF (‘j e F IT 1 

c 
= 5 
= 3 

GETLRh 
EhC 
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FHt3 = -A(2)+3.0*8I~*(ERE**2) + A(~J*(BIM#+J) 
= A(J)*(ORE**2) -. At3)*(61#**2) 

FRTt4) = -A(4)*2.O+ERE*PIK 
FRT(5) = A(S)*HRE 
FRT(6) = -A(6J+f?Iv 
FRT(7J = A(7) 
fIT(l) = A(1)*.3.[i*~IM+(bRE**2) - A(l)*(B1~**3) 
‘)3jIT(2J = A(2J+ipf3f?E**3J *- 
FIT(3) = 

A(2J*J.O*EqE*(61#**2) 
A(3J*.?.U*BRE*@;V 

FIT (4) = A(4J*(Bb’E**2J - A(4J*(BIp*i2) 
,FIT(S) = A(5Jr:jII” 
,&IT(~) = A(6J*jRE 
FIT(7J = A(O) 

i 
PRT(1) = 3.0~(A(l)*(@Ht**%)-A(I)+(BIW*+2)) 

,PRT(PJ = -6*0+-A :2J*BRE- BJU 

; 2 .# ::; 
= 2.0*1(Z)-*ERE 
= -200tAi4)*81P 

FP’RT(SJ = A(5: 
FP.iT (1) = 6.0fA(:: J*ERE*t-IN 
FPIT (2) = j.O:;(A!2)*(@H~.**2)-A(2)*(BIlv;**2)) 
FPIT(3J = 2.0eA(:J*EIV 
FPIT (4) = 2.0~ A(i..JtkRE 
FPIT(5J = ~(6) 
CALL ATkLTF(7rFR:J 
CALL ATkLTF(7r=I, J 
CALL ATkLTF(5,;P. TJ 
CALL ATILT,F(5,FF:TJ 

c= =; 
RETLRh 
EhG 

Sl;EUWU~‘IhE FOC~~T~~(~RE~O;~I,U~FRT~FIT~FPRT~F~IT~~~LJ 
CCbELE\.PREC1S:0h Ct~~~B2~~~P~20J~FAT~20J~FIT~20)rFPAT~2OJ~FPIT~2OJ 
FRT!IJ = A(1)’ (E <E+*4J 
FRT(2J .= A(l)2 t@ LV’**4J 
FRT(3J1 = -~.OIA(~)*(URE~*~)*(BIV**~) 
FHT(4J = A(2)"4,3*cRE*(~I~**J) 
FRT (5) = -4,O~A(2)*EI~*iBHE**3) 
FHT (6) = A(3J’(@NE**3J 
FRT(7J = -3.O~A(Z)*ERE*(BIV.**2) 
FHT(BJ = A(4)* (@IV/+*3J 
FRT(9J = -3,0a’A( iJ*bIb’*(f3Rii**2J 
FHT(10) = A(!i:*(dHE**2J - A(5)*(BIM**2) 
FRT(llJ = -2.L*A(6)*HRE*l3Ib' 
FRT (12) = A(7‘*@2E 
FRT(13J = -A(t )*!IV 
FRT(14J = A(9; 
FIT(l) = 4.0*1(1)*@1b’*(WE*+3J 
FIT(2J = -4,O+A(lJ*tzRE*(BIW**J) 
FIT(3J f A(2)'(PKE*r4) 
FIT(c)) = A(2)*(eIP**4) 
FIT(S) = -6.01A(2J*(EREc*2J*(~I~,**2) 
FIT(6) = J.O*f(3)*dI~*(bRE*+2) 
FIT(7J = -A(3I+(HIV+*3) 
FIT (8) = A(4)?! (EdE+*3) 
FIT(g) = -2. O~*Ad4)*kRE*(BIh!**2) 
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2.0*A(!i)*ERE*BIV 
A(6)*(8RE**2) - A(6)*(BIM**2) 
A(7)*EIv 

< 

A(Bl+EHE 
AtlO) 
4.O+A(lJ*(BRE**3J 
-12.0*A(lJ*ORE*(BIM**2J / 
4.O.*A(2J*(BIt'**3J 
-12.0*A(2J*EIM*(QRE**2) ! 
J.O*A(3J*(URE**2J 
-3.0+A(3J+(RIM**2J '. 
-i.~*~(ii)*eRE*kiIY ‘, 
2.O*A(SJ*ERE 
-2aO*A(6J*BIb' 

FITtlOJ = 
FITtllJ = 
FIT(12J = 
FIT(13J = 
FIT(14J = 
FPRTtl) = 
FPRT(2) = 
FPRT(3) = 
FPRT(r0 = 
FPRTtS) = 
FPRT(6) = 
FPRT(7) = 
FPRTf8) = 
FPRlt9) = 
FPRT(loJ = A(7J 
FPIT(lJ = -4.O*F(lJ*(l31M**3J 
FFIT(2J = 12.0*A(1J+BIV*!BRE**2J 
FPIT(3) = 4.0*A(2J*(EiRE**JJ 
FPIT(4J = -l2.O*A(2J*BRE*(B1~**2) 
FPITtSJ = 6.O*A(3J*ERE*BIV 
FPIT(7) = -3.O*A(411(8IW**2) 
FPIT (8) = 2.O*A(5)*EIV 
FPIT(9) = 2.0*A(6J*ERE 
FFfT(10) = A(@) 
CALL AT~YLTF(~~~FHTJ 
CALL ATwLTF(14rFITJ 
CALL ATwLT.F(lOvFPRTJ 
CALL ATkLTFtlOtFPITJ 
v = 14 
L = 10 
RETLRh 
EhC 

SUEROLTIKE FIFTh(@RE,BIM'A,FRTIFIT~FPRfrFPIT~~~LJ 
CGLbLE f'KEC1SICtri ~~~,~t~~A~2UJ~FRT~20J~fI~~2OJ~FRRT~2OJ~FPIT~2OJ 
FRT(1: = A(lJ*(@RE**5J 
FKl(zJ z A(i?*5.0*~HE*(EIK**4J 
FRT (3) = -1o~O*A(l)*(eRE**3)*(BIe*+2) , 
FRT(4J Z -A(2)4(CIC4*5) 
FRT (5) z -A(~J*~.O*EI~*(EHE**~) 
FHT(6) = 10,O+A(2J*(ERE**JJ*(BI~**2J 
FRT(7J Z A(3i+(ERE444) 
FHl(8) = A(jJ*(@IV**4J 
FRT(9J = -~.~I*A(~J*(BRE**~J*(BIC**~) 
FHT (10) = 4,0*A(4J*~HE*(OIV**3J 
FRT(llJ = -4rO*A(4)*eIN*(@RE**3) 
FRT(12) = A(S)*(t3RE44Z) 
FRT(l3J = -~.04A(~l4~~E*(BI~442) ‘. 
FRT(14J = A(i-)+(E~C*+Z) 
FRT(15J = -j.O*A(6)4~lw*(BRE442) 
FHT (16) = A(7)4(HkE445) - A(7)*(aIth+2) 
FKT(17J = -2,O+A(eJ*Eb.E+f?IV ,.. ; 
FRT(lk?J = A('3)+EkE 
FRT(19J = -A(lO)*F;LY 
FHT(20) = A(11) 
FIT(l) = A(lJ*(ElV++S: 
FIT (2) = A(l)*C. O+,jlb’*(EWE444) 
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FIT(J) = 
FIT(O) 

-1o.o*A(i)*(BRE**2)*(~1~**3) 
= A(2)*(E?RE**5) 

;:: t:; 
= 5.o*A(2J*dRE+(BIW**4) 
= -1O.O*A~2~~~BHE**3~*~BIM**21 

FIT(7) = 4.0*A(3)*81M*(.BRE**S) 
FIT(B) = -4.O*A(J)*eRE*.(BIH**3) 
FIT(g) = A(4)*(BRE*a4) 
FIltlO) = At4J*(BIM+*4J 
Filtll) = -A(4J*(BAE**2)*(BI~**2) 
FIT(12J = -A(5)‘*(BfP**3) 
FIT(13) = 3.0*A(5)*6f~*(BRE+*2) 
FIT(l4) = A(6)*(BRE+*JJ 
FIT(l5) = -3*O*A(6J*ORE*(BIW+*2) 
FIf(16J = 2.O*>A(7)*bRE*BIK 
FIl(17) = A(8J*((BRE**2J-(BIM**2)) 
FIf(l8) = h(9J+BIv 
FiT(l9) = P(lOJ*BRE 
FIT (20) = A(121 
.FPRT(l) = S.O*A(lJ*(ORE**4J 
FPRT (2) = :.O*A(l)*(UIV**4) 
FPRT(3) = -3O.O*A(lJ*(BRE**2J*(BIf.v~2) 
FPRT (4) = ~0~0*A(2)+9RE*(81~**3) 
FPRT(5) = -~O.O*A(~J*BIW*(IL!RE**~J 
FPRT (6) = 4.0*A(3J*(BRE**3J 
FFRl(7) = -12,0*A(J)*@RE*(EIH**2) 
FPRT (8) = L:.O*A(4J*(;1IP**3) 
FPRT (9) = -12.0*A(4J*BI~*(BRE**21 
FFRT (lo) = 3.3*A(5J*CBRE**2J 
FPRT(ll) = -3.O*A(5)+(OIb!**2J 
FPRT (12) = -6.O*A(6J’@HE*E?I~ 
FPRT (13) = ~.IJ*A(~)*I’RE 
FPRT(14) = -210*~(8)*f31:4 
FPRT(15J = A(9) 
FPIT (1) = 20.0*A(lJ*F~iY*(BRE**3) 
FPIT(2J = -2O.O*A(~J*BRE*(UI~**J) 
FF17 (3) = ,C.(i*At2)*(t.?RE**4J 
FFIT (4) = L.O*A(2J*(LiIV*+4) 
FFIT (5) = -30.0*A(2J.?(@RE**2J*(BIY*+2) 
FFIT(6J = -4.U*A(JJ*:eIM**3J 
FPIT(7J = l~.O*A(jJ*l:IY*(BHE**2J 
FPIT (8) = 4.Ct*A(4J+(!?RE**3J 
FPIT (9) = -12.0*A(rJ’BRE*(f31M**2) 
FPITtlOJ = 6.O*A(5J*i:RE*BIM 
FPIT (11) = 3.0*A(6J+‘E?HE**2) 
FPIT (12) = -3”O*Al6J: (B:P**21 
FPIl(13J = 2.0*A(7J*l.:Ib 
FPIT (14) = 2.(t*A(8J*I.RE 
FPIT(15) = AtlO) 
CALL ATwLTF(20,FHTJ 
CALL ATWLTF(~UIFITJ 
CALL ATCLTF(lSrFPRTJ 
CALL ATkLTF(15rFPITJ -.-- +. 
Y = 20 -.- 
L = 15 
REli,Rh 
EI\C 
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SUBROUTINE SIXTH(BRE,i3IM~A~FRT,FIT,FPRT,FPIl,M,li) 
;;‘;‘CW: PRECISIOh BR~~~IM~Al2O~~FRTC30~~FITl3~~~FPRT[30),fP1l~3O~ 

= A(lJ*(@RE**6J 
FRT(2J = -All)*CBIP+*6J 
FRTl3J = 15.0*A(lJ+(BRE**2J*(BIM*+4) 
FRTl4J = -15.0*A(l)+(BRE*+4)*(8IM**2J 
F”? (5) = -6.O*A(2J*E!RE*(BIK+*5) ; 
FAT(B) = -6,O*AC2J*EIY*CBRE**51 
FRTl7J = 20.0*Al2J*(BRE**3J*lBIC**3) 
FRTl8) = AlJJ*l@HE**5) 
FRTlSJ = 5.0*FC3)*eRE*l91~**4) 
FRTllO) = -1O.O*AC3J*CBl~E**3J*(BLYll*2J 
FRT~uJ = -A(4J*CeIY**5) 
FRTl12J = -5.C*A(4J*BIV*lBRE**4J 
FRTll3) = 10.T*A(4J*(ER~~**2)*(BIW+*J) 
FRTt14J = A(S:*(URE8*4) 
FRT 115) = Al5:*lBIP**4J 
FRTC16) = -6.C*A(5J*lERL**2)*lBIM**2J 
FHTl17) = 4.0*AlbJ*~RE*Il31~**3) 
FRT(18) = -4,0*A(6)*BI~+(eRE**3) 
FRTl19) = A(7)*li?RE**3) 
FRTCOOJ = -3.C+A(71*BREtCDZ~**2J 
FRTl2l) = Al8!*la1vv*3J 
FRT(22) = -3.(*A(e)*BIV*C@RE**2J 
FRtC23J = A~9~~l~ERE**2~“~BIM**2~)-2.0*A~10~~~RE*81M 
FRTl24) = (A(Z~)*BREJ - CA(12)*E?IYJ 
FRTl25J = Ail,') 
FIT111 = 6.0*~(1)*BRE*(!lJ~**5) 
FIll2J = 6.0*c(l~*I?I~*(dRE**5) 
FITC3J = -2~.~*AClJ+CBRi**3)*(BLY**J I 
FITC4J = AC2J*(ElIE+*6) 
FIT 15) = -A(2)*(i1IV**6) 
FITC6J = 15.O,Al2)*C@RE~*2)*(~1~**4) 
FIT(7J - = -15tC*A(2J*C@Rd**4J*(BIK**2 1 
FIlC8) = Al3)*lk?Ib'**5) 
FIT 19) = 5.0*El3)*61~*(3RE**4) 
FITllO) = -~O.O*A~~)*C~~~E~+~J*~~I~**~J 
FIT1111 = Al4I*CHRL**5J 
FIT(12) = 5,O~AA(‘+)*GRE*(BIN**L,J 
FIT(13J = -1Oc~*A(4J*l@iE**3J*Cl3IV**2J 
FITl14J = 4.0oA(5J*EI~*iERE**3J 
FITllSJ = -4.C*AC5)*BRE*C@IW**J) 
F1Tl16J F Al6)*CURE**Y) 
FXTC17) = AC6)*CCiIv**Y) 
FlT(l8) = -6.G*A(6)*(eRE**2)*(eIM**2) 
FIT(19) = -A(:J*(BfF**3) 
F17120J = J.O*AC7J*EIC*(BRE**2) 
FIT (21) = A(B)*CBRE**J) 
FfTC22) = -3.O*A(e)*BREcCeLC+*2) 
FITC23J = (2eC!*AlSJ+BRE*I3IV) + A(lO)*((BRE**2)-lelM**2)) 
FIT1241 = (A(3l)*~II) + lA(12)MREJ 
FIT(25) = A(141 
FPRT (1) = 6.0*AClJ*(ERE**5) 
FPRT (2) = 30rE*A(l)*BRE*leIY**4J 
FFRT(3) = -6O.O*All)*l~9E**J)*(BIY**2) 
FFRl(SJ’= -b.G*A(2)*(BI;d**5) 
FFRll5J = -3O.o*A(2)+BI~~~*lYRE**4) 
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FPRi (6) 
FPRT 17) 

= 60.0sA(2J+(BRE**2)+(61~**3) 
q 5.0*;\(3)*(BRE**4) 

FPRT (8) = 5.0*/\(3)*(BIK**4) 
FPRT 19) = -3Orl*A(j)*(E~E*r2)*(61~**2) 
FPRT:! 10) = 2o.ii*~~(4J*BRE*(ijIW**3) 
FPRTC11) = -2O>O*A(4J*B1~*~@RE**J) 
FPRTf12) = 4~0~:A(5J*(RRE:**J) 
FPRTIl3) = -12,0:~A(5)*Bl~:E*(BI~**2) 
FPRT (14) = Q*O'A(6)*(BIP'**.;J 
FPRT(lS! = -125o:~A(6J*E~.~*(BRE**2) 
FPR7 (16) = 3.05A(7J*(8HC**s?J 
FPRT 117) = -3..~*A(7J*(B. b!*:‘:2J 
FPRT(10) = -6.3*b.(8)*BRr *B:;W 
FPRT (19) = 2.O~(A(gJ*ERt'-A~10)*6I~) 
FPRT120) = A(111 
FPITllJ = 6.0+4(f J*(BIb!,‘-*5! 
FPIT(PJ = 3OeO*A~l)~EI~~~(BHE**4J 
FPIT (3) = -6O..J*P(1)*(BRE*c2)*(BIC**3) 
FPIT (4) = 6.O*A(CJ*l@RE, *5) 
FFIT (5) = 30.OcA~2J~3RE-(@ib!**4J 
FPIT(6) = -60,0*~~(2)*(E~~E*~~3)*(eIC**2) 
FPIT (7) = 2O.C~Ai3)+8I~"(EKE**3) 
FPIT (8) = -2O.g*~(3)*@R~~*(~IM**3) 
FPI7 (9) = 5.0*A(yJ*(@RE-*4) 
FPIT (10) = 5.C+A:4J+(EIc**4J 
FPITtlz) = -3G.O;‘A(4J*(i:RE**2)*(61~**2) 
FPIT(12J = -4.0*~~,(5)*(@:~*:~3) 
FPIT (13) = l2,3*~,(5)*BI;.*(:!RE**2) 
FPIT(l4) = 4~C’*A{6J*(~R’.**.jJ 
FFI'I(15) = -lc".O:,.A(6)*e'lEs~BI#**2) 
FFIT(16) = 6.Cb*Ai7)?@RE ,@I:’ 
FPIl(17) = j.c*Aie)*( (iz.E**2J-(i31~**2)) 
FPIT (18) = 2m(*A:5)*6IV 
FFITtlS) = ~.IeA;lOJ*@R 
FFIl(2OJ = ~0.2) 
CALL ATYLTF (2: ,F:!T J 
CALL AT\yLTF (2t ,F IT) 
CALL A-ikdLTF (2[ ,F-‘RT J 
CALL ATkiLTF (21 rF :I1 J 

r 
= 25 
= 20 

RETLRF( 
EhC 

SUW!%TIhE SE?E~(E!R~VEJIU~A~FRTIFIT,FPHTIFPIT~V~LJ 
COLtLE PREC1S’Oh ~Rt:~~I~:,~A~20~~FRT~35~rFIT~35~rFFRT~3O~rFPIT~30~ 
FRTIl) = A(1)’ (PliE**7) 
FRT(2J = -7.0: A(lJ*~RE+(f31~**6J 
FRT43J = -2l.r.*A~1~*1~Fc~*e5~*~81~**2) 
FRT(4) = 35.0~“A(1J*(l?RE**ZJ*(f31v**4J 
FRT:5) = A(2):-(EIIV**7J 
FRTl6) = -7.O:~A(2)+hII*(BRE**6) 
FRT(7) = -2l.i!*A(2)*(Efi~*a2J*(EI~**5) 
FR7 i8) = 35.0-A(2J*(eRE4*4)*(61~**3) 
FRTt9) = A(3) -.(E!RE**6) 
FRTilOi = -A( :J*(k!Ip**f) 
FRT 111) = l5m .*b(3)*(BFE*:~2)*(eI~,**4, 
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FRTt12) = 
FR’i(l3) = 

-.t5oO*A(~)a(BRE*~rl)*(e~lr;**2) 
-~:.O*A(41~.0~~E*(BIr~345) 

Ffi’i (1~) = ;:O.O*A(; )%';'ORE$k ~110(OI~*n3) 
Fri7ts5) = -:* 0 :‘A A ( I } : x. 0 L If. :. ( 6 F !I :; ::: 5 ) 
Fl?i(lb) = A,5):>(BRf-n:>‘;) 
Fiii‘(l7) = 5 (J<:/\(5): 2.r. ‘:r(f-JIf::::::/)) 
Fi!‘.;(].()) ‘= -:. O*OC/j(L: )::.:.r?llE*:)3)::;(RZM**2) 
Ff:i (19) ” -;:(6)*(Bjps:.5) 
FET (20) = -:;,.0+1\(6:4F,.il./:~(~1~~~~:‘.1:1}) 
Ff!‘i(21) = 
p’;; ‘(22) ” 

lr .o:::A(~‘*Ir -:E;:.:~?.‘~::ICIM*nJ) 
I\ -/)o(pR: 4% :I 

F;'i ;(2J) 
FLT (24) 

,E A:i')~r'(6I. ,'O'.) 
- -i:.OeA(7 +(:RE:::e2!*(OIM**2) 

FET(25) = 4.O+A(a):tlRE+(BIK~s3) 
rr:Y(25) = -f:cOeA(8. ~hKs(~;<EG:=?J) 
FE; (27) = A(CJ)*(ER! $42) 
FRT(2B) = -3cC%A(9 ce!?EdtDIf<t:*2) 
FFiS (24) = A: 10) t (8 p!C;;:j) 
,FRT(3u) = -.;.C:::A(l’ )4GIM4(ERE442) 
FET(31) = A!11)*:((, REc+2)-(E!tic?2)) 
FT;Tt32) = -;.*O*A(l; 14BRE46IP: 
FRT(33) = (A(lj)*elE) - (A(14)*81~) 
FRT(34) = A(151 
FIT(l) ='-A(1)e(UI~.frC:7) 
FIT(P) = 7.C*A(l)~tr~~~(BRE*~6) 
.FIT(J) = -3~.O+A(l:~i_RE~~3)"(OIM**J) 
FIi’(4) = 21.03::A(l): ;~‘~+X:2!-i:(o(~44s) 
FIT(5) = A ( 2. ) $ ( 6 R E .’ :: ‘,- ) 
FiT(6) = -21.CcA(2;o(r~E+xS)~!BIMI*2) 
FIT(7) = 35.OoA(2)~.(E~~*o=)~:(L:IC~-~[!;) 
FIT(a) = -7,OrA(2)~E~3ciEIr;tr6! 
FIi(9) = 6.C*A(J)+~.RE:(@IK*~:5) 
FIS(lo1 = 
FIT(11) = 
FiT(12) = 
FI;i13) = 
FIi(lQ) = 
FIT(15) = 
FIT(lh) = 
FIT(17) = 
FIT(l8) ‘= 
FIT(19) = 
FSl(20) = 
FIT(21) = 
FIT(22) = 
FET(23) = 
FI7(2~1 = 
FIT(‘E) = 
FIT(26) = 
;;w; = 

T = 
FIT(29) = 
FIT(30) = 
FIl(31) = 
“IT(32) = 
;‘IT(33) = 
:‘IT(34) = 

-2O,C*A(.)+iERE+~:L)r(EIlv**J) 
6.O+A(3): EIb'*(ERE-i:5! 
A(4);ibRi+*i) 
-P(4)*(81p+*6) 
-15.0*A(')*(BRE**4)*(BIy**2) 
15.0*A(4~+(ERE*~2)~(BIM**4) 
A(5)*(BIr**S) 
5.O~A(5)i6I~e(BRE*r4) 
-lO.O*A(")r(BRE*~2)+(BI~**3) 
A(6)4(BRE:*+3) 
5.O+A(6)sER'~(BI~**4) 
-1O.O*A(~)tieHE~~,)*(BI~**2)' 
-~:..04A(7;+~:~E~:(Cb~,:~:~3) 
I;.O4A(7):‘-EI,:~(BRC,‘..:::‘lf 
Aa8)4(EiRl'*4$; 
A(8)*(BIf,4*:!: 
-~oO~A(a.*(~RE+*2)s(B~~**2) 
-A(91*(@ .w*.:'3) 
3.O~A(9):~1~.4IBRE**2) . 
A(lO)*(B?E*?3) 
-3.O*A(lb*ERE*(EW**2) 
2.0*A(ll,*BRE*BIr~ 
A(12)4((EhE~I2)-(8IM**2)) 
(A(13)‘@-C) f (A(l4)*BRE) 
A(161 
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FFRl(1) 
FFRT (2 1 

= 7.O*A(l)*(ERE**6) 
= -7aO*A(l)*(EIM**6) 

FFRT (3) = -105.O*A(l)*(BRE**4)*(BIM**2r 
FFRT(4) = 105.O*A(1)*(URE**2)*(@IV**r) 
FFRT(5) = -42.O*A(2)*BIM*(BRE**5) 
FPRT (6) = 140.O*A(2)*(bRE**3)*(t!IfJ**3) 
FFRT(7) = -42,O*A(2)*BRE*(BIb!**5) 
FPRT (8 1 = 6.0*A(3)*(6RE**5) 
FFRT(9) = -~O.I)*A(~)~(~?RE**~)*(BI~J.**~) 
FFRT (10) = 3O.O*A(3)*8RE*(bIM**4) 
FFRT(l1) = -6.O+A(4)*(BIb!**5) 
FFRT (12) = -3O.O*A(4)*UIV*(l3RE**4) 
FFRT(13) = 60.0*A(4)*(@RE**2)*(BIW**J) 
.FFRT (14) = 5.O*A(5)*(BHE**4) 
FFRT(15) = fj.O*A(5)*(BIM**4) 
FFRT(16) = -:O.O*A(S)*(BRE**2)4(BIM4*2) 
FPRl(17) = -2O.O*A(6)*HIM*(BRE**3) 
,FPRT(lf3) = 2@.O*A(6)*BRE*(BIK**3) 
FPRT(19) = 4eO*A(7)*(EHE**3) 
FFRT(20) = -12.O*A(7)*E!RE*(BIM**2) 
FFRT (21) = 4cO*A(@)4(BIM**3) 
FPRT (22) = ~!2.0*A(6)*~I~*(@RE**2) 
.FPRT (23) = 3,O*A(g)*((BRE**2)-(61~**2)) 
FFhT(24) = -C .O*A(10)*8RE*BItt 
FFRTf25) = 2>O*((A(ll)*BRE)-(A(l2)WIM)) 
FFRT(26) = A 131 
FPIT(1) = 42. O~A(1)*BR?*(BIV**5) 
FFIT(2) = -1’O,O*A(l)+(BRE**3)*(8IM**3) 
FPIT (3) = 42. O*A(l)*HI”*(E!RE**5) 
FPIT(4) = 7.!~*A(2)*(BRE**6) 
FFIT(5) = -7 O*A(2)*(f?IM**6) 
FPIT(6) = -li,5.O*A(2)*(BRE**4)*(8IM**2) 
FFIT(7) = lo~.O*A(2)4(3RE**2)*(61~*44) 
FFIT(8) = 6.fJ*A(3)4(81M**f?~) 
FPIT(9) = 30.,O*A(3)*8Ix*(BRE**4) 
FFIT (10) = -!,o.o*A(3)*(BR~**2)*(aIM**3) 
FPIT (11) = f,.O*A(4)*(ERE**5) 
FPIT(12) = -.;O.O*A(4)*(BRE**3)*(BI~**2) 
FFIT(13) = 33.G*A(4)*FHE*(BIM**4) 
FPIT(14) = ~;].c*A(!~)*EIM*(BRE**~) 
FPIT(15) = -.?O.O*A(5)~BRE*(BIM**J) 
IFFIT (16) = 5,O*A(6)*(E:RE**4) 
FFIT(17) = 5,0*A(6)*(kIM+*Y) 
FFIT(18) = -,30,0*A(6)+(8RE**2)*(61~**2) 
FFIT(l9) = -:+.(j*A(f)*:BIV**J) 
FFIT(20) = 12.C*A(7)*EIM*(BRE**2) 
FPIT(21) = 4,OeA(e)*(PRE**3) 
FFIT (22) = -129Q*A(e)~BRE*(BI#**~) 
FFIT (23) = 6.O*A(9)4BKE*EIbt 
FFIT (24) = 3.OaA(10)*!(8RE**2)-(61~**2)) 
FFfT(25) = (A(J.l)*ldIt’ -tA(12)*BRE) 
FFIT(26) = A(l4) 
CALL AfkLfFf341FRT1 
CALL ATwLTF(34~FIT) 
CALL ATWLTF(26rFPRT) 
CALL ATWLTF(26rFPIT) 
)r = 34 



4.7 
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CHAPTER II 

NUMERICAL SOLUTION FOR PROPAGATION OF LONGITUDINAL 

WAVES ALONG THE APPLIED M&NiTkC FIELD IN A 

THREE-FLUID PARTTALLY IONIZED GAS 

Thomas L. Dahl and David L. Murphree 

NoTE' '$%r"%ie Qpendices are 4 
references and e'uations begin a new sequence in each Chapter. 

ettered consecutively by Chapter, and 
each'chapter includes its own list of symbols. 

~_... -_-. -~.- ~---_ _-_ --. ._.--_. .._- _.- .._._ -.. . -- -.-~ _. -.- _- 
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LIST OF SYMBOLS 

e Magnitude of Electric Charge 

C 

Y 

D/Dt 

vab 

'e i n s 3 
N e,Ln Number Density of Electrons, Ions, or Neutral Particles 

oe,i,n 

Velocity of Light in a Vacuum 

Specific Heat Ratio 

Hydrodynamic Derivative 

Effective Collision Frequency of Type a with Type b Particles 

vab+Vac, Total Collision Frequency 

Electric Field Strength 

Magnetic Field Strength 

Fluid Velocity of Electrons, Ions, or Neutral Particles 

Mass Density of Electrons, Ions, or Neutral Particles 

Pe,i,n Partial Pressure of Electron, Ion, or Neutral Particles 

We,i Electron or Ion Plasma Frequency 

w Applied Frequency of the Wave 

q,L Cyclotron Frequency of the Electrons, Associa_ted with Either 
the Transverse or Longitudinal Components of Ho 

k Complex Wave Number 

kR Real Part of the Wave Number 

k1 Imaginary Part of the Wave Number 

n kc/w, Index of Refraction 

m mi/m,, Mass Ratio of Ions to Electrons 

De,i;n Acoustic Velocity of Electron, Ion, or Neutral Particle Species 

Df [Y(Pi+Pe+Pn>!(pi+Pe+Pn)l~~ Acoustic Velocity of the Entire Gas 

uP M&~i)/ (Pe+Pi>14s Ac'oustic Velocity of the Electron-Ion Gas 

i fi 

.- - ~. _ _.. - - - - ..~ .__ ___ _-._ . .-. -.. . 
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I. INTRODUCTION 

A three-fluid theory, using Maxwell's equations together with a set of 

coupled hydrodynamic equations for an interacting mixture of electrons, ions, 

and neutral molecules, has been employed.by Tanenbaum and Mintzer 1 to examine 

small-amplitude oscillations In an infinite, homogenous, partly ionized gas 

with a uniform external magnetic field. Plots of phase velocJ.ty versus 

frequency were obtained for the case of negligible collisional damping for 

wave propagation along and normal to the applied magnetic. field. A set of 

approximate solutions to the dispersion relation was employed to yield the 

phase velocities for various frequency bands. Employing the same physical 

model, Tanenbaum and Meskan' later presented the complete dispersion 

equation with no.approximations for propagation of longitudinal waves along 

the magnetic field. 

This paper will present a numerical solution to the complete dispersion 
n 

relation derived.by Tanenbaum and Meskan' governing the propagation of longl- 

tudinal waves along the magnetic field. Solutions have been determIned for 

the complex wave number for a typical ionospheric condition. Plots of the phase 

velocity and damping characteristics of the three resulting wave modes are 
-5 0 

presented for the frequency range 10 < w < 10 radians/second. Since the 

governing equations are linear, the longitudinal perturbation is described 

by superimposing the three wave solutions determined from the solution of. 

the dispersion relation. 

II. TRRORY 

A. Dispersion Relation 

The derivation of the dispersion relation which governa wave propagation 

of small longitudiqal perturbations along a 'inagnetic field In a partially 
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ionized gas composed of interacting electrons, ions, and neutral particles 

will be outlined. This derivation is presented in References 1 and 2. 

Assume that: 

(1) The degree of ionization is fixed 

(2) Each gas obeys the perfect gas law 

(3) Damping caused by the frictional forces of each gas allows for the 
conservation of total momentum of the system 

(4) No heat flow exists within the gases 

Therefore, the following set of equations describe the three-fluid mixture. 

(1) Maxwell's equations: 

VxIi = 3l.E <Niii'Neije) + $ g 
C 

(2) The continuity equation for each gas: 

+f Pe,i,n = ‘Pe,ijll v 9 ce,i,n 

(3) The momentum equation for each gas: 

& <v,> = -&(E + 5$) - gz - vel(ie-Vi) - ven(Ve-iin) 

2 (71) = sL(z + BiXi) - ppi - v1,(6,-V,) - Vin(ipn) 
C 

pi 

Pn 

(4) The adiabatic condition for each gas: 

P N -Y 
e,i,n es&n = constant 

The coordinate system is aligned such that the applied magnetic field 

vector ii, = (H,,,H~~, O)., The above plasma equations may be linea&ed by 

perturbing the quantities i, ve,i,n, Z, Ne,i,n 'and Pe,i,n with smail, 

periodic oscillations of frequency W. .For example, 
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N, - No + nee 1 kc-ot) 

where No is the undisturbed electron density, ne the amplitude of the 

perturbation , and N, the resulting electron number density at any position 

x at any time t. The perturbation is considered to propagate only in the 

x-direction, i.e., one-dimensional propagation. The wave number, k(w), is 

one'of the allowed- set of wave numbers whose value, as a function of frequency, 

we wish to determine. The resulting 'twenty-one equations (with twenty-one 

unknowns) may be manipulatedLby subat<tution until all the variable.8, except 

qe, are eliminated. The resulting expressions for ii, may be written moat 

conveniently as 

V ex 

I[ 1 V ey -0 

V ez 0) 

where 

A11 - (Cl/m) - (C3C5/Cl) + (fd2u2T/mC2) 

Al2 - A21 - -w2**/mC2 

Al3 - iwwT[(C3/cl) - (c(j/mc2)] 

A22 = (C*/d - (C4C6/C2) + w2ti2L/mC 2 

A23 - 'A32 - -(i’~xq)c2) [c4-(~6/m) 1 

A31 - iwT[($/mcl) - (C4/C*)l 

A33 - A2* + (@*~*,/mcl)- 

and 

Cl - Je- iWVei + fd*(VenVni/Y*) 

C2 - w*,(l-n ) 2 -1 -iWV,i + U*(VenVni/Yl) 

C3 =,* 2 -w i-k*U*i + iwv i + m2(vinvni/Y*) 

C4 - w*-,*i(l-n*)-l + iWVi + O*‘lvinVni/Y1) 
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where 

Cg’ - w 2-u2e-k2U2e + 

'6 
9 w2-w2e (l-n')-l 

9 - w* + iwvn 

y2 = y1 - k*U*n 

i+J, + W2(VenVne/Y*> 

%L - eH" T,L/Iiec 

U es&n - (VP e,i,nlPe,i,n)' 

"e,i - 2 (he No/me i ; I4 n = kc/w 

Therefpre, the disperaion,relation which governs the perturbation in the elec- 

tron,velocity may be determined by expanding the matrix expression,, Equation (1). 

Restricting attention to propagation of longitudinal waves along the mag- 

netic field, i.e., UT - 0, we obtain 

AllVex = 0 . 

For Vex to exist 

Al1 -O , 

which when written completely yields the dispersion relation governing the 

propagation of longitudinal waves along the applied magnetic field 

k6+Ak4+ Bk*+ C- 0 , 

where 

(2) 

A- 
-.[ 

w*-w* e + W2-,* 1 + w* 
u2e 7 q 1 

-iw 
L 

vei+ven + vie+Wn + vni+vne 
U*e vz, z 3 'n 

B- i& c 
.w4,w2w* e-w* (v eivni+veivne+venvni) 3 

+* [ 
W4-W2W2imW2(VieVni+VneVin+VneVie) 1 

+* c 4 2 2 (4 'W lw e+02i)-W2(~inven+vieven+vi~vei) 
3 

+* C 
fJJ3 (~ei+Ven+Uni+Vne)-WW*e (Vni+vne) 1 

+* C w3(vin +v +v +v ie ni ne )-ww*e(vni+vne) 2 1 Pi 



+* [ 
w3(Vei+ven+vin+vie)-WW 2e(vni+vne) Pn 

1 pi 

c = -w 6 + W4(W2i + w2,) + $w4[ (VeiVni + VeiVne + uenvni) 

+ (Vievne + vieuni + Vinvne) + (Veivin + VenVin + Venvie)l 

+ i [-W5(Vi+Ve+Vn) + W3W2,Vn (1 + Pe/Pi + Pn/Pi)l 
lJ2iU2,U2, 

Equation (2) is the relationship between the complex wave number, k, and 

the wave frequency, w, of the propagating wave. Solution of this dispersion 

relationship will determine the value of the longitudinal perturbations at 

any position x and any time t. Note that the dispersion relation is actually 

a cubic equation in k2, and will be solved algebraically using Cardan's 

solution for cubits. 3 This set of answers will then be exacted using the 

Newton-Raphson4 method of iteration. This dispersion relation does not hold 

for high frequencies, i.e., w>>w~. In this case, some of the waves described 

by the dispersion relation have wave lengths comparable to or less than the 

mean free paths of the heavy particles and the Debye length of the electrons. 

B. Cardan's Solution of Cubits 
3 

We seek solution to the dispersion relation, Equation (2), of the form 

x3+Ax2 + Bx+ C = 0 

where the coefficients are complex numbers previously defined and x = k2. 

To remove the quadratic term, define the transforming equation 

x=y - A/3 (3) 

and obtain the reduced cubic equation, 

where 

1 : y3+py+q=o 
: ."I:;.. 

.. . . i:r. .',I.‘ 
P = (B - A2/3) 

4 = (2A3 - 9AB + 27C)/27 
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In order to solve the reduced cubic, transform again by letting 
,. ," 
~ : .:: y=z- z 3- :. 

and obtain 

28 + qz3 - p3/27 - 0 

which is a quadratic in a3 with the roots 

z3 = [-q + (q* + 4p3/27)*]/* 

(4) 

(5) 

By choosing either the plus or the minus sign, equation (5) may be solved 

for three values of z. Then by combining (3) and (4), obtain 

x=2- P/32 - A/3 s 

into which the three values of z may be substituted in order to yield the 

three roots of the cubic. The Cardan's method is strictly algebraic and 

presents the advantage of an ordered extraction of the roots. However, the 

computer operations produced enough error that the Newton-Raphson method is 

required to exact the solution. 

c. Newton-Raphson Method4 

Using each of the roots found by Cardan's method as an approximation, 

substitute into the iterative process 

, 

or 

%+1 
x3n + Ax*, + BX +'C 

='+I- 3~2~+2~+B ' 

Care must be taken to insure that the approximations do not-fall in regions 

that iterate to misleading results, such as two equal roots of the interchange '. :,": '. 
in order of extraction. 

i, .I . __' :',. ;,; :-. 

III. DISCUSSION 

The objective is to find the complex wave number, k, which is a function 

of the applied frequency, w. That is, solve 
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x3+Ax2 +Bx+ C = 0 

where x - k* and the complex coefficients are functions of wave frequency, 

collision frequencies, plasma frequencies, and acoustic velocities of all 

species. Digital computer programs were written for the IBM 360 Model 40 

at Mississippi State University and the Univac 1108 at The NASA-Slide11 

Computer Facility at Slidell, Louisiana. The simplified flow chart in 

Appendix A may be helpful in the discussion of the program procedure which 

follows. 

After the plasma properties have been determined, and the coefficients 

of the dispersion relation calculated, Cardan's method of solution of cubic 

equations is employed. Note that after obtaining the reduced cubic 

(z3)* + qi3 - p3/27 = 0 , 

the Newton-Raphson iteration is performed to insure the proper choice of 

2. The three resulting values of z are substituted into the following 

relation to yield a set of roots to the cubic dispersion relation. 

xi = zi - p/3zi - A/3, i = 1,3 

Since the value of xi is usually small, the terms on the right of the above 

equation are of such magnitudes as to cancel each other, instead of summing 

to the proper x. Consequently, considerable accuracy is lost during the 

complex subtraction and division in the above expression. Therefore, these 

roots are treated only as approximations, and again the Newton-Raphson 

iteration is performed on the cubic 

f (xl = x3+Ax2 +Bx+ C . 

The resulting roots are checked first by comparing the value of the cubic 

to zero and second by comparing the sum of the roots to -A, i.e., 

x1 + x2 f x3 - -A. Finally, the six wave numbers, k, are found by taking 

the square roots of xi, 1 - 1,3. 

The values of kj - kR 
cl 

+ kIj, j - 1,6 and the corresponding w, completely 
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describe the nature of the wave propagation at any position x and any time 

t, i.e. 

Y= y, + 
i(kx-wt) 

Ye 

= y, + ye-kIX& CkRX-Wt) 

where Y is some field quantity, Y, the undisturbed value, and y the amplitude 

of the perturbation at the source. The phase velocity is defined Uj= W/kR 
J 

, 

and the wave damping is determined by kT. Only the three positive values of 

k, which represent waves propagating in the positive x direction will be 

discussed, since the three negative values represent the same wave form in 

the negative x direction. 

Because of the.wide separation in the magnitude of the real and imaginary 

components of the coefficients and reswlting Cardan terms, the complex opera- 

tions were reduced so that all calculations take place in real arithmetic. 

This allows the greatest use of the double precision features of the Fortran 

language. Special care must be taken in all operations to obtain maximum 

accuracy. Whenever possible, expressions were written in their lowest power 

form where addition and multiplication are the dominant operations. For 

instance, 9x7 was written as d=) . Special sub- 

programs were written to perform the complex operations of division, multi- 

plication, squaring, cubing, square and cube root extraction, and Newton- 

Raphson iteration. 

Only the subroutines performing square and cube root extraction con- 

verted the complex numbers into polar form. These operations were performed 

in the XPOCPX subroutine by the expression 

(a+ib)l'n = (-Jm)'In {cos (k$E) + i sin (-1) 

where K = 1, l *, n-l and B is the argument of the complex number. All other 

functions merely manipulated on the coefficients of the operating complex 

numbers. 
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Consequently, the product and the square of complex numbers, i.e. the 

CPROD and CDSQ subroutines , were taken simply and accurately since 

(a+ib)(c+id) = (ac-bd) + i(bc+ad) 

A similar approach was taken to the division operation, the CDDIV 

subroutine, since 

a+ib X zIz%_ac+bd++i;c-ad) , _ a+ib 
c+id c+id 

and also the cubing operation, CDCB subroutine, because 

(a+ib>3 - (a2-b2+2abi)(a+ib) 

= a(a+fi b)(a-fl b) + ib(fla+b)(fla-b) . 

By exercising the caution discussed above and utilizing the iterations 

described previously, roots of the highest possible accuracy are obtained 

from the dispersion relation. 

IV. RESULTS 

The program was tested for a plasma with the following parameters, 

which were calculated as a typical ionospheric condition at an altitude 

of 320 kilometers at 45O North latitude and 90' West longitude. 

vni = 1.1202 x 10e4 coll./sec. we = 2.8806 x lo7 rad./sec. 

vin - 2.2541 x 10-l coll./sec. WI = 1.5731 X: lo5 rad./sec. 

'en - 1.3072 x 101 ~011. /sec. Uf,i,n = 8.5097 x lo* m./sec. 

Vei - 5.7883 x 101 coll./sec. ue = 2.8158 x 10' m./sec. 

A complete solution to the dispersion relation was determined for applied 

frequencies ranging from low5 to lo8 radians/second, The mathematically 

possible solutions for the phase velocities and corresponding e-folding dis- 

tances are plotted in Figures 1 and 2, respectively. In these two figures, 

both the horizontal and vertical axes are plotted on logarithmic scales. The 
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propagating and damping characteristics of each solution for w - 1 radian/ 

second are plotted in Eigure 3. 

Phase Velocities 

As seen in Eigure 1, the phase velocity predictions .agree in many 

respects with the approximated solutions of Tanenbaum and Mintzer, which are 

presented in Figure 1 of Reference 1. 

1. At low frequencies, w = vni < vin, only two of'the possible three wave 

solutions propagate through the plasma, one at the,acoustic velocity of 

the entire fluid, Uf = (yP/p>? and the other at a much lower velocity. 

In the numerical calculations, Uf, Ui, and Un were taken as the same. 

The third wave mode has a phase velocity greater than the speed of light 

for W < Wea However, as shown in Figure 2, the e-folding distance for the 

third solution is less than 10 -2 meters for this frequency range; therefore, 

there is no propagation for this mode of the disturbance. 

2. When w = vni < vin, one of the propagating wave modes increases exponen- 

tially in phase velocity with increasing frequency until w = vine The 

other propagating mode propagates at the constant phase velocity Uf. 

3. When vin e w < q, the wave mode which was propagating with exponentially 

increasing phase velocity with increasing frequency now propagates at the 

acoustic velocity of the electronLion gas mixture 

Up = ~,(~e~o~l)]' 

4. When wi < w c we, the two existing wave modes propagate at the ion and 

neutral acoustic velocity, Ui and U,. 

5. When W > We, the third wave mode now has a finite e-folding distance 

and propagates at the electron acoustic velocity. 

The phase velocity plot presented as Figure 1 of Reference 1 was obtained 
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from a set of approximate solutions to the complete dispersion relation, 

each approximate solution valid in a given frequency range. That analysis 

indicated that the wave mode which propagates at the phase velocity Up in 

the range vin < w < wi was the same mode which propagates at Uf for low 

frequencies, w < Vin* The present analysis which considers the complete 

dispersion relation for longitudinal oscillations along the magnetic field 

shows that this is not the case. The wave solution with an exponentially 

increasing phase velocity with increasing frequency for w c vin is the wave 

mode which propagates at a phase velocity Up for vin < w c wi. 

Both the real and the imaginary components of the wave number, kR 

and kI, are interdependent during all mathematical operations performed to 

obtain the solutions of the complete dispersion relation for continuotisly 

increasing frequency. Consequently, both components of the wave number 

are calculated simultaneously at each frequency during a continuous transfer 

across the frequency spectrum considered. Therefore, information on obtaining 

the continuous curve describing the phase velocity behavior of a given wave 

mode with increasing frequency is contained in requiring continuity of both 

kR and kT with frequency change. The qualitative plots presented in Figure 1 

of Reference 1 could not reveal the correct smooth transition of the phase 

velocity of a given wave mode with frequency since the phase velocity was 

calculated in several discrete frequency ranges and the kT solutions were 

not considered. 

E-Folding Distances 

The e-folding distance is defined as the distance from the source of 

the perturbation at which the amplitude of the wave is damped to l/e of 

its initial amplitude, where e is the exponential factor. Each of the e- 

folding solutions corresponds to one of the phase velocity solutions, since 
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both quantities are taken from the imaginary and real components, respec- 

tively, of the same wave number, k. Note that corresponding solutions are 

symbolized in the same manner on each graph. Some interesting facts are 

observed in Figure 2, the plot of e-folding distance versus wave frequency. 

1. When w c vin, the wave mode which propagates at a phase velocity of 

Uf is essentially undamped. The e-folding distance for this wave mode 

decreases exponentially to a constant value when w = Vine This solution 

shows very little damping throughout the frequency spectrum considered. 

2. When W < Vinr the wave mode which propagates with an exponentially 

increasing phase velocity has a decreasing e-folding distance with 

increasing frequency until w 2 Vin. The e-folding distance for this 

wave mode then remains constant with increasing frequency until w = Wi. 

The phase velocity of this wave mode is Up for vin < w < Win At W E W-j, 

the e-folding distance for this wave mode decreases to a new constant 

value. The phase velocity of this wave also decreases to a new constant 

value at W = Wis 
\ 

3. For w < we, the third wave solution shows almost instantaneous damping 

near the source of the disturbance, i.e. an e-folding distance of less 

than 10'" meters. The corresponding phase velocity for this wave mode 

was greater than the speed of light. A slight increase in the e-folding 

distance for this third mode of wave propagation occurs at w = wi. 

At w = we, the e-folding distance for this wave mode increases almost 

immediately to the e-folding value of the second solution. 

Propagation 

Figure 3 shows the propagation described comple'tely by the three complex 

wave numbers at w = 1 radian/second. The influence of the different kP and 

kT on the wave length and attenuation of the possible wave solutions can be 



seen. The wave configurations in Figure 3 occurred at the time when the 

wave with the slowest phase velocity had traversed a distance twice the 

maximum wave length given by the three solutions. The actual perturbation 

of the electron velocity along the magnetic field would propagate as the 

superposition of the three solutions since the governing equations were 

linearized by small perturbation theory. For illustrative purposes, the 

initial perturbation was taken as Vex0 for all solutions. The superposition 

is shown as a solid line, while the other solutions are symbolized as before. 

The solution which is damped almost immediately at the source of the dis- 

turbance is shown as a point on the vertical axis at x = 0. 

V. CONCLUSION 

Complete solutions were obtained for the dispersion relation based on 

the three-fluid plasma model which governs the propagation of small longi- 

tudinal perturbations along the magnetic field. The complete solution for 

the dispersion relation is advantageous because it gives the complete 

description of the wave propagation. The resulting wave numbers consist 

of both real and imaginary parts which describe both the velocity and damping 

characteristics of each solution. Since the governing equations are linear- 

ized, the complete perturbation can be described by superimposing the wave 

solutions for the three-fluid plasma model. 

An iteration procedure was necessary for accurate results because the 

magnitudes of some important terms in Cardan's method are such that the terms 

cannot be subtracted or added effectively by the computer. Numerically, the 

roots of the cubic dispersion relation are very accurate except at the high 

frequencies above we. Here, although the roots can still be trusted numer- 

ically, their magnitudes are not as precise as the roots of lower frequencies. 

The complex phase velocity solutions closely agree with the approximated 

predictions made by Tanenbaum and Mintzer in the various frequency ranges. 

However, the order of extraction of the solutions over the considered 
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frequency range does not.agree.. The approximate solution could not reveal 

the correct order since it did not continuously transfer across the entire 

frequency spectrum nor was the infokmation contained in requiring continuity 

in' the imaginary part of the wave number utilized. 



m 
U 

Figure 1. .Plot of Phase Velocities versus Frequency. 
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Appendix A. Simplified Flow Chart of Computer Program. 

Start 9 
Parameters 

efficient8 

p = B-A213 

9 = (2A3-9AB + C) /27 

2 = 1/2(-q 

v 1 ‘ 
Call WZCB 

Newton-Raphson's Method for 

(23)2+q(z3)-p3/27=0 

Call 
XPOCPX 

0 
for 

w 
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2 

25 I-1 

x(I) - z(I)-P/3z(I) - A/3 

Call NWTXRT 
Newton-Raphson's Method for 

x3 + Ax2+Bai+C = 0 

+ 
Call XPOCPX 
e-k 

6 

1 

f 

U(J) = w/kR(J) 

Xc(J) = l/kI(J) 

J-2 
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3 P 
Tests for Accuracy 

x(l) + x(2) + x(3) = 0 
x3+Ax2+Bx+ C= 0 

I 
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Appendix B. Computer Program. 

*********W****COMPUTATIClN OF IONOSPHERIC PARAnETERS*~+~~*~~~~~** 
ME = ELECTRON MASS 
HI = ION NASS 
xnn = MOLECULAR WEIGHT 
r = ELECTRON CHARGE 
K= BOLTZMAN CONSTANT 
DN = DIAHETER OF NEUTRAL ATOM 
DIAMETER OF NEUTRAL PARTICLE ANDION IS 3,GE-10 METERS 
GAHMA = SPECIFIC ,HEAT RATICFDR COMPOSITE GAS 
AL’ = ALTITUDE IN KILGMETERS 
8 = MAGNETIC FIELD STRENGTH. IN WEBERS PER SQUARE METER 
ALL NO. DENSITIES ARE IN NO. PER CUf3IC METER EXCEPT FOR NEC 
NO = NO. DENSITY FOR ATOMIC OXYGEN 
N E== NO. DENSITY FOR HELIUM 
NO2 = NO. DENSITY FOR MOLECULAR OXYGEN 
NN2 = NO. DENSITY FOR MOLECULAR NITROGEN 
NN = NEUTRAL NUMBER DENSITY IN l/METERS CUBED 
NI = IDN NUMBER DENSITY IN l/METERS CUBED 
NE = ELECTRON NUMBER DENSITY IN l/METERS CUBED 
NEC = ELECTRON NUMBER DENSITY IN l/CENTIHETERS CUBED 
TI = ION TEMPERATURE IN DEGREES KELVIN 
TE = ELECTRON TEMPERATURE IN DEGREES KELVIN 
F = DEGREE OF NON-ION1 ZATION 
HI = CYCLOTRON FREQUENCY OF IONS 
WE = CYCLQTRQN FREQUENCY OF ELECTRONS 
PFI = PLASMA FREQUENCY OF IONS 
PFE = PLASMA FREQUENCY OF ELECTRONS 
UItUN = ION AND NEUTRAL SOUND VELOCITY, RESPECTIVELY 
UE = ELECTRON SOUND VELOCITY 
UF = ACOUSTIC VELOCITY FOR THE ENTIRE FLUID 
QIN = COLLISION CROSS SECTION OF IONS WITH NEUTRALS 
QEN = COLLISION CROSS SECTION OF ELECTRONS WITH NEUTRALS 
VEI'= COLLISION FREQUENCY OF ELECTRONS WITH IONS 
VEN = COLLISION FREQUENCY OF ELECTRONS WITH NEUTRALS 
VIN-COLLISION FREQUENCY FOR IONS. PASSING THRU NEUTRAL GAS 
VNI=COLLISION FREQUENCY FOR NEUTRALS PASSING THRU -ION GAS 
CI = MEAN THERMAL SPEED OF'IONS IN METERS PER SECOND 
CE = -MEAN THERMAL SPEED OF ELECTRONS. IN METERS PER SECOND 
TAUE = TIME BETWEEN COLLISIONS. OF ELECTRONS HITH HEAVY PARTICLES 
TAUIN = .TIME BETWEEN COLLISIONS OF IONS WITH NEUTRALS 
REAL NHE,LAM1,LAM2,Kl,NEC,KRl,KR2,KIl,KI2 
DOUBLE PRECISION UE,UI,UN,VEI,VEN,VINjNE1NI,flN,ME,MI,MN,RHOE,RHOI, 

1 RHON,VNI,PFE,PFI,ND,NO2,NN2 
AL=320.0 
Cl-1.6E-19 
DN=3.E-10 
K1=1.3BE-23 
61=5,1E-5 
IFtAL-300.) 1,212 

1NE = (EXPtO,OC69*CAL-300.)~W3.E11 



74 

GO TO 3 
2 NE = EXP(G.G069*(300.-AL) I*3.Ell 
3 NI = NE 

NEC = NE+l.E-6 
NN = lC.**(18.G-((AL-120.)~18.6~**0.5) 
F = l.C-NE/NN 
TI = lGU0.-65G.*EXP(O.035*tlZOe-AL~1 
TE = TI+2GG.+220G.*SIN~C.GG523*~AL-lOG.~~ 
IFIAL-275.) 4.5.5 

4 XMW = 27.7~Q.C457*tAL-lUC. 1 
GO TQ 6 

5 XHW = 19.4-a*0222*~AL-i!75.~ 
6 MN = XMU*l.bbE-27 

MI = UN 
ME = 9. LlE-31 
Al= 9.42 + l.S*ALOG(TE) - C.S*ALOG(NEC) 
VEI = NEC*A1/(0.38*(TE*+1.5)) 
QEN = 3.14*tDN**2)/4.C 
CE,= (8.*Kl*TE/(3,14*HE))**O.5 
VEN = CE*QEN+NN 
VE=VF.I+VEN 
TAUE = l./iVEN+VEI) 
QIN = 3,14*DN*DN 
CJ = (8,*Kl*T1/(3.14*h!I))**G.5 
VIN = (2,**0,5t*CJ*QIN+NN 
WI = (2,**G,5~+CJ*QIN*NI 
TAUIN = l./VIN 
WI =Cl*BJ/f'!I 
UEC=Cl*Bl/HE 
SIGMA = .NE*Cl*Cl/(Hf*(VEN+VEI)1 
820 = iiEC*TAUE 
810 = F*UEC*TAUE*kI*TAUIN 
RO=UN*NN+#I*NI 
DELTA = (12.5E-7)*SIGMA 
AX =Bl/(R0*12,56E-7)**C.5 
iF IAL-165.) 20r21,21 

2C ALX=AL-120. 
NO = 10.**116.8-C.C222*ALX) 
NME = 10.**(13.5-G,OC89*ALX) 
NO2 = 10.**(16.8-i.G356*ALX) 
NN2 = 10.**(17.5-C.C334*ALX) 
GO TO 22 

21 ALX = AL - 165. 
NO = 10.**(15.8-0,00827*ALX) 
NHE = 10.**(13.1-0,00184*ALXI 
NO2 = lC.**t15.1-C.G145*ALX) 
NN2 = 10.**(16.0-;.0129*ALXl 

22 XMl = (16,*N0+4.*NliE)/~NG+NHE) 
XH2 = t28.*Nti2 + 32.*NO2)/tNN2 +NC!Z) 
XP = (NC2+NNZ)/(NC2+NO+NN2+NHE1 
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GAMl = 1.67 
IF (TE-550~123r24.24 

23 GAH2 = 1.40 
GO TO 25 

24 GAM2 =. 1.39 
25 GAMA = (GAMl*XM2/XHl + XP*GAMZ~tGAMl'l.)'/(L.-XP~~0(GAM2-~.~~~ 

1 (XH2/XMl + XP/(l.-XP)*CGAMl-~.I/CGAM2-~.~) 
RI = 8.31E3/XMW 
RE = 1.48E7 
UI = (GAMMA*RI*TI)**OIS 
UE = fGAMJ*RE*TE)**O.S 
UF=UI 
EPS=8.85E-12 
PFI=I (NI*Cl*Cl/MI/EPS)**O,5 
PFE=(NE*Cl*Cl/ME/EPS)rs0,5 
THIS STACK OF CARDS CONVERTS ALL QUANTITIES TO GAUSSIAN UNITS 
Cl=C1+3.E9 
Bl=Bl*l.Eb 
NE=NE+l.D-6 
NI=NI*~.D-6 
NN=NN+l.D-6 
MI=MIW.D3 
MN=#N*l,D3 
ME=ME*l.D3 
QEN=QEN*l.E4 
CE=CE+l.E2 
QIN=QIN*l.E4 
CJ=CJ+l.E2 
SIG#A=SIGMA*9.E9 
RO=RO*l.E-3 
DELTA=DELTA*9.E16 .I ‘. 

AX=AXSl.EZ 
No=No*l.E?b 
NHE=NHE*l,E-6 
NOZ=NOZ*l, E-6 
RI=RI’%laE-3 
NM2=tJNZ*l,E-6 
RE=RE*loE-3 
UI=UI*l.D2 
UN=UI 
UE=UE*l.OZ 
UF=UF*l.DZ 

12 CONTINUE 
RHOE=NE*ME 
RHOf=NI*MI 
RHOM= NN’WIN 
CALL TRHVLG(~FE~PFI~RHOE,RHOIIRHON,VEI~VEN,VIN~VNI~UITUE~UN~ 
STOP 
END 
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DOUBLE PRECISION UEtiJI,UN,VEitVENtVINtRHOEtRHOIt 
1RHONtVli,VNItVNE,MIt~E,~12tVEtVI~VN~UPR2, 
2 HE2, H2t W3t W4t H5t W6 

DOUBLE PRECfSION A3t A2t ,ASQRt ASQTt ACBRt ACBIt 83t .82t ATHSBRt 
1 ATMSBIt PlRt PlIt PR* PI& QRt QI, QSQRt QSQIt f’SQRt.,PSQIt PCBRt 
2 PCBI, AMAOR, AMADIt RADR(21, RADI(2:)t ZCBRt ZCBIt 
3 ZR~31rZf~3)tBETR~3~t8ETIC3~tXZR~3~tXZI~3~ 

DOUBLE PRECISION XSQRf3~;XSQI~3);XCBRa3biXCBIf3~;AXSQRO~AXSQI~3~. 
l,BXR(3)tBXIf3~rCRDNR(3~tCRDNI~3~~XTSf~~~3)tXTSKIf3)tXRRTO(3~t 
3XIRTOf3) 

PROGRAM USES CARDAN*S METHOD TO SOLVE CUBIC EQUATIONS 
OF THE FORM tX**3 + AX**2 + 8X + C =‘O’. 

n tAPPLIED FREPUENCY 
WE :PLASMA FREQUENCY OF ELECTRONS 
HI :PLASMA FREQUENCY OF IONS 
RHOItMASS DENSITY DF IONS 
RHOE:MASS DENSITY OF ELECTRONS 
RHONtMASS DEFJSITY OF NEUTRALS 
VA8 :EFFECTIVE COLLISION FREQUENCY 

OF tA’ HITH t B’ 
UI :ACOUSTIC VELOCITY OF IONS 
UE :ACOUSTfC VELOCITY OF ELECTRQNS 
UN :ACO.USTIC VELOCITY OF NEUTRALS 
VIE=.RHOE*VEI/RHOI 
VNE=RHOEWEN/RHON 
MI2=#1**2 
HE2=NE**2 
u12=u1**2 
UE2=UE**2 
uN2=utJ**2 
VE=VEI+VEN 
VI=VBE+VPN 
VN=VNE+VNf 
UPRZ = (UI*UN*lJE)+*(-2 1 
UTOT=UI*UN*UE 

+~~**~~at*~~*****~+~**~ 
H=l.DS 
JJ=O 

1000 idRITE f3t104) W 
104 FORMAT (/It U=‘;lPD11.4) 

JJ=JJ+l 
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L=JJ 
#2 = we*2 
w3 = tJ**sg 
td4 = w*4 
us = w**s 
#6 = W**6 .,, 
A3=(WE/UEW*2a(#I/UI )~~2-g(HbUEB~*2a~W~U~)~*Z~~ II/W*&-’ 

A2= -H*(VE*QUIWND**2. +VI*(lJE*UMF.**2 +VN*~UEWJIb~Z)*UPR2 

83 = (W4*(UNZ+UI2+lJEZl- WZ*(UEZ*(VNI*VIE tVNE*VIN +VNE*VIE) .4 
lUI2*~VEI’WNI+VEI*VNE +VENWNf 1 .tU1!2*(VIMWEW VIEWEN + VtN%fEXI+ 
2HE2WN2 +HI2WN2 +NE2*lJI2 tMI2WE2~bW,JPR2 

82 = (H3*( .UN2~(VEH4VEN+VINtV~Eb~U12lltdVEI~VEElaVFlZ+VFIE)a!JE2~(VfMa 
1 VIEWNIWNEI ) -WWE2*( (VNfaVNE j~(UN2sRHONaUE2~RHOE)~.RHo~ ,4 
1 (VNI+VNE)WI2))WPRZ 

C3=(B4*(VEI*VNI +VES*VNE aVEFl*VNE +VNlt*VIE +VNEfVIN +VNEWIE 
l+VINWEN -+VIE*VEN +VEN*VEI ;+WI2 +HEZbWb b*UPRZ 

C2 =~-H5~~VIN+VIE+VEItVEN+VNIeVNEB~~3~~E2*(VN~~~RH~E+RHON~~VN~ 
1 RHOI)))*UPRZ 

CALL CDSQ(A3tAZtASQRtASQIl 
CALL CDCB(A3tA2tACBRtACDLb 
CALL CPROD(A3tA2tB3tB2tATHSGRtATMSBI~ 

DEFINE P’S AND Q’S. 

PlR = ASQR/3,6DG 
Pll[ = ASQI/-3.000 
PR = 03 - PlR 
PIM = 82 - PlI 
PRD3=PR/3+DO 
PID3=PIM/3rDG 
QR= Z.DG*ACBR127.00 
QI- Z,DO*ACBI127,DG 

- AfMS,BR/3tDG +C3 
- ATMS81~3.DG. +C2 

DEFINE Q-2, P+*3 AND AMAD. 

CALL CDSQ(QRtQI~QSQR,QSiJI) 
CALL CDSQ(PRtPIMtPSQRtPSQI1 
CALL CDCB(PRtPIMtPCBR.PCBII 
AMADR = QSQR + 4,ODG*PCBR/27,000 
AMA01 = QSQI + 4,GDO*PCBI127,GDO 
W~‘XPClCPX(lt2tANADR,AMADItRADRtRADI) 

= O,SDG*(-QR. + RADR(1)) 
ZCBI = O.SDO*I(-QI ,+ RADI(11) 
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CALL..BHTLC8~ZCBR~tCBI,QR,QIP~~CBR~2~,DO~~t~CBI~2-l.DO,.iZC~R,~ 
lZCBf,NUt~R,NlJMIt 

CALL XP.QCPXf1~;3.ZCBR,ZCBfrZRIEII 
DO 9.1~193 
XZRfIl := -3.ODWZRtI) 
XZIfI):= 3,ODO*ZIfI). 
CALL CDDIV fPR,PIH,XZRfI,,XZIf~I~,.9ETRfI,~8ETIf-I~~ 
XRfZ)kZRfEB-BETRfIkA3/3rDO 
XI~I)~ZL~I~-BETI~I)-A2~3.DO 

9 CONTINUE 
ATSTR=XRfl)*XRf2)+XRf3) 
ATSTI=XICl)+Xf~2)+XIO 
RTAR=-ATSTR/A3 
RTAI=-ATSfI/AZ 
IFfRTAR.EU.l.DO.AND.RTAT.E&l.DO) GO TO 301 
DO 145 I=lr3 
IFfDABSfXRfI)/ZRfIhLE.l~D-13) XRfI)=O,DO 
IFfDABSfXZfI~/ZIfI):~~~LE.1.D-l3~ XI(I)-0.00 
WRITEf3r222) XRff)eXIfI) 

222 FORMAT f * XR=',D23i16+' X1=*,023.14) 
CALL'N#TXRTfXRfI~,XffI~,A3,A2,B3,~2,C3,C2,XRfZ~;XIfI~~ffUMR~~UMI~ 
WRITEf3.223) XRfI)rXIfI~;NUMR~NUNI 

223 FORMAT f l XR=',D23,16,' XI=“,D23.16rB ZERO='r2DZ4.6) 
145 CONTINUE 

ATSTR=XRflI+XRf2)+XRO 
ATSTI=XIflB+XIf2)+XIf31 
RTAR=-AfSTR/A3 
RTAI=-ATSTI/AZ 

301 CONTINUE 
DO 302 I=lr3 
CALL CDSQfXRfI~tXI.fI)rXSGRfI~,XSCtIfIT) 
CALL CDCBfXRfI~rXIfE)rXCBRfI~~XC6~fI)) 
CALL~CPRODUA3,A2,XSORfI~,XSQIfI~sAXS~RfI~~AXS~I~I~~~ 
CALL CPRODfB3,B2rXRfI~iXIfI~~t3XRfI)~~XIfI~) 
CRDNRfI~1=XCBRfI)+AXSQRtI1*6XRfI~+C3 
CRDNIfIk=XCBIfIMAXSGIfI)+6XIfI)+C2 

302 CONTINUE 

NOTE: K = DSQRTfXR1, UU = W/K AND XE = l/KI. 
NOTE: EACH ‘CALL’ GIVES TWO K’S. 

PHVY f4,JJ)=H 
DO. 10 1~113 
CALL~XPOCPXf1,2rXRfI~,XIfIhKR,KI~ 
PKRdlI=KRfl) 
PKItf)=KIUl) 
DO 15 J=1+2 
U(J) = WKRfJ) 

15 XEfJf =-l.ODO/KIfJ) 
PHVYfIrJJ~=DLOGIOfDAESfUfl)~~*lO. 



79 

WRITE ~3.l55~~XR~I~.XIfI~.KRfl~iKIfl~.U~l~;XE~l~~.KR~2~.KIf2~iU~2~. 
1 XE(2) 

155 FDRHATf’ XR=‘.023,16.‘~X1=.;023.16,~ KR =.;,D13.6,’ KI =*. 
1 Dl3.6.2X.@U ='.013.6.2X.'XE =*.D13.&/55X..KR =';D13.6. ' KI ='. 
2 013.6.2X.‘U ='.013.6.2X.'XE =@.Dl3.6) 

10 CONTINUE 
WRITEt3.158) .ATSTR.ATSTI.RTAR.RTAI 

~ 158 FORMATf’? AR=';D~3.16.' 'AI='.D23.~6.' TEST=‘.2023i16) 
DO 33 1=1.3 
WRITEf3.156~XRfI~.XIfI~~.XCBR(I~,XCBI~X~~.XSOR~~I~.XSQI~I~-~~ 

lCRDNRfI).CRDNI11) 
156 FORHATt-’ @,.‘X=‘.2014.6.* X3=@.2D14.6.’ ‘X2=‘.2014.6.’ CRDN=‘.2014.6 

1) 
33 CONTINUE 

DR=,l.D12 
IF(U.GEeDR1 GD TO 9000 
IF (U .GE, 1.00 9 -AND. U .LT..lrOD23) U = U * 1.00 1 
IF tW rGE. 1.00 8 .AND. U .LT, 1.00 9) U = H + 1.00 8 
IF (W .GE. 1.00 7 .AND. W .LT. 1.00 8) U = W + 1.00 7 
IF CW .GE. 1.00 6- -AND. W .LT. 1.00 7) H = W + 1.00 6 
IF fW .GE. 1.00 5 .ANO. W.,LT. 1.00 6) U = W + 1.00 5 
IF fW ?GEi 1.00 4 -AND. W .LT. 1.00 5) U = U + 1.00 4 
IF tW .GE. 1.00 3 .AND. W .LT. 1.00 4) M = M + 1.00 3 
IF tW .GE. 1.00 2 -AND. U, .LT. 1.00 3) U = U + 1.00 2 
IF.fU .GE, 1.00 l-.AND. U .LT. 1.00 2) H = ci + 1.00 1 
IF tU .GE, 1.00 O.-AND. U .Lf. 1.00 1) W = .W +l.OD 0 
IF fW.GE. 1.00-l -AND. W .LT. l.OD 0) W = W + 1.00-l 
IF fW .GE. l-00-2 .AND. U .LT. 1.00-l) bf = W+ l-00-2 
IF tW .GE. 1.00-3 -AND, H .LT, .l.OD-2) W = W + 1.00-3 
IF fW .GE. 1.00-4 .AND. U .LT. l.OD-3) H = W + 1.00-4 
PF tW .GE. 1.00-S -AND. U .LT. PiOD-41 H = U + 1.00-5 
IF tbl .GE. 1.00-6 *AND. W .LT. l.OD-51 U = W +-1.00-6 
IF fW .GEm -l..OD-7 .AND. W .LT. l.OD-6) U = W + 1.00-7 
GO TO 1000 

9000 RETURN 
DEBUG UNITt31,SUBCHK 
END 

SUBROUTINE CDSQtA.B.SQl.SQ2) 
DOUBLE PRECISION A. B. SQl. SQ2 
z;:=fA-B)*fA+B) 

= 2,0DO*A*B 
RETURN 
DEBUG UNITf31,SUBCHK 
END 
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SUBROUTINE XPOCPX(M,N,AtB,XR,XMJ -,. 
THIS .SUBROUTINE CALCULATES THE M/NTH ROOTS OF A.-COMPLEX NUMBER 
QF THE FOR?4 .‘C.= 4 + I*B'. 
DOUBLE, PRECISION AI Bs BARI BETA* .COEFe K, :PI, RM, RN* ,T, XMt25)r 

1 XRtZSJ,ALFA 
DOUBLE PRECISION AAtBB 
AA=DABS(AJ 
BB=DABS(BJ 
RW = M 
RN = N 
PI, = 3.14159265358~7932400 
IF~AA.EQ.O.DD.OR.BB.EQ.O~.DO~ BAR=QSQRT(A**2+B**2J 
IF~AA.EQ.D.DD.OR.BB.EQ.0.DOJ GO TO 1010 
BAR=DABSIAJ?DSQRi(l,DG+(B/AJ**2J 
IF(9.LE.L.D-32) GO TO 1010 
IF~DAB~~DLOGlO(AA)-DLOG10(BB)J.LE+4.D8~BAR=DSQRT(A*~Z+B**2J 

1010 COEF = BAR**1 RH/RNJ 
T = DATAN24BvAJ 
IF /B *LT. O,ODO) T = 2,0DO*PI - DABS(T) 
K = O.ODO 
DO 100 I=l,N 
BETA =‘.T + K*2,ODO*PI 
ALFA=BETA*RM/RN 
XRtIJ = COEF*DCOSLALFAJ 
XM( I J = COEF*DSIN(ALFAJ 

100 K = K + 1.0-00 
RETURN 
DEBUG UNIT(31,SUBCHK 
EtiD 

SUBROUTINE CDDIV(A,BpC,D,E,FJ 
DOUBLE PRECISION A,BpC,O,E,F,DEM 
DOUBLE PRECISION CC,00 
CC5DA3SdCJ 
DD=DADS t D J 
tFBCCoEQ~O.DO.OR.OD.EQ.O.DOJ OEM=C**2+0**2 
IFdCC.EQ~O.OO.OR.DD.EQ.O.DO) GO TO 1010 
DEM=(C~aZa~(~.DO~(D/C)~~2J 
IF~~D.LE.leD-32) GO TO PO10 
IFtDABS~DhOG1O~CC~-OLOGl~~~DDJ~.LE.4.DD~OE~=~C**2+D~~2J . 

1010 E=tA*Ca3*DJ/OEfl 
;;;;B;-D*AJ/DEM 

DEBUG UNIT(3) ,SUBCHK 
END 
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SUBROUTINE NHTXRT6~R~XI.AR.A~,BR.BI.CR.CI.XNEHR.XNEHI.t!U?-1I\.tJUHI!E 
DOUBLE PRECISION X!?.Xi.Af?.AI.5R.3I.CR.CI.X~IE~R.XNEHI. 

1 XCBR.XCBI.XSQR.XSQI,AXSQR.AXSQI.AXR.AXI.BXR.BXI. 
2 NUf4R.NUNI.DEf4R.DEHI.DLTR.D~~TI 

DOUBLE PRECISION TESTR.TESTI 
N=O 

5 CONTINUE 
N=N+l 
IF(N.GT;ZOOt GO TO 15 
CALL CDCBLXR.XI.XCBR.XCBI) 
CALL CDSQ(XR,XI.XSQR.XSQI) 
CALL CPROD(AR,AI,XSQR.XSQI,AXSQI) 
CALL CPROD~AR,AI,XR.XI,AXR.AXI~ 
CALL CPROD~BR.BIrXR,XI,3XR.BXIJ 
NUMR=XCBR+AXSQR+BXR+CR 
NUHI=XCBI4AXSQI+BXI+CI 
DEMR=3.DO*XSQR+2.DO~AXR+BR 
DEMI=3.DO*XSQI+2.DO*AXI+31 
IF4DEMR.EQ.O.DO.ANO .DEMI.EQ.O.DO) WRITE(3.101) 
IF(DEMR,EQ,O,OO.AND .DEMI.EQ.O.DO) GO TO 15 
IF(NUt~R,EQ.O.DO.ANO.NUt4I.EQ.O.DOt GO TO 15 
CALL CDDIV(NUMR.NUtlI rDEMR,DEMI.DLTR.DLTI~ 
XNEMR=XR-OPTR 
XNEUI=XI-OLTI 
TESTR=DABS(XR/OLTR) 
TESTI=DABS(XI/DLTI) 
IFITESTR.LT,,l.D-lS.AND.TESTI.LT.l.D-151 GO TO 15 
XR=XNEHR 
XI=X:NEHI 
GO TO 5 

15 RETURN 
101 FORtlAT(’ ***a THE DERIVATIVE OF FtX*+3)=0 *a** * ) 

DEEUG UNIT(3) .SURCHf( 
END 
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SUBROUTINE NYTZCB~XR.XI.QR.QI,SR,SI’~XNEMR,XNE~I,NUNR.NUflJJ 
OOUBLE.PRECISION XR.XI.QR.QI.SR.Sf,XNEHRIXME#3r 

1 XSQR.XSQI.QTMSXR.QTXSXI.NU#f+Df#RI 
2 DEUI.DLTR.DLTI 

DOUBLE PRECISION TESfR.TESTI 
N=O 

5 CONTINUE 
N=N+l 
IF(N,GT.l.CiOJ GO TO 15 
CALL CDSQ~XR.XI.XSQR.XSQIJ 
CALL CPROD~XR.XI.QR.QI.QTMSXR.QTMSXIJ 
NUHR=XSQR -+ QTMSXR - SR 
NUMI=XSQI + QTHSXI - SI 
DEMR=Z.DO*XR + QR 
OEMI=:2,DO+XI, + QI 
IFtDE#R.EP.O.DO.ANO .DEMI.EQ.O.DOJ .HRITE(3.101) 
IFtDEWR.EQ.O.DOeAND .DEMI.EQ.O.OOJ- GO TO 15 
IF(NUMR.EQ.O.D0.ANO.NUMI.EU.O.DOJ GO TO 15 
CALL CDOIV~NUNR.NUMI.OE#R.DEt4I.DLTR.OLTIJ 
XNEUR=XR-OLTR 
XNE#I=XI-DLTI 
TESTR=DABStXR/DLTRJ 
TESTI=DABS(XI#DLTIJ 
IFtTESTR.LT.l.D-lS.AND.TESTl.LT.l.Wl5) GO TO 15 
XR=XNEWR 
XI=XNEWI 
GO TO 5 

15 RETURN 
101 FORMATt’ +*** THE DERIVATIVE OF F42**3J=O ****.I 

END 

SUBROUTINE CPROO(A.B.C.O.PROOR.PROOI~ 
DOUBLE PRECISION A. 8. C. 0. PROOR. PROD1 
PRDDR = A+C - B*O 
PROD1 = B*C +.A*D 
RETURN 
END 

SUBROUTINE CDCB(X.Y.X3,Y3J 
DOUBLE PRECISION X.Y.X3.Y3.C 
DOUBLE PRECISION CY,CX 
C-DSQRTC3,DOJ 
cv=c*v 
cx=c*x 
%3=%*/%+cY)*~%-CY~ 
~~;~;~cx+Yw(cx-YJ 

END 
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CHAPTER III 

EXPANSION AND NUMERICAL SOLUTION OF THE GENERAL 

DISPERSION RELATION FOR SMALL AMPLITUDE 

PERTURBATIONS IN A THREE-FLUID PLASMA 

Raymond L. Brown and David L. Murphree 

NOTE: Figures, references and equations begin a.new sequence in each Chapter, 
Also, the Appendices are lettered consecutively by Chapter, and 
each Chapter includes its own List of Symbols. 
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LIST OF SYMBOLS 

C Velocity of Light in a Vacuum 

C 
P 

cv 

e 

2 
A 
H 

h 

i 

K 

m 
e,Ln 

m 

n 

N 
e,i,n 

P 
e,i,n 

'e i n , 9 

'a 

i; 
P 

'a 

Vii 

0 

P e,i,n 

w 

We,i 

Specific Heat at Constant Pressure 

Specific Heat at Constant Volume 

Charge of Electron 

Electrical Field Strength 

Magnetic Field Strength 

Steady Applied Magnetic Field Strength 

Perturbation Magnetic Field Strength 

Ai- 

Wave Number (Kr = real part; Ki = imaginary part) 

Mass of Electron, Ion, and Neutral Particle 

Mass Ratio of Ions to Electrons 

Index of Refraction 

Number Density of Electrons, Ions, and Neutral Particles 

Partial Pressures of the Electron, Ion, or Neutral Particle 
Gas 

Acoustic Velocity of Electron, Ion, or Neutral Particle 
Species 

Acoustic Velocity of the Entire Gas 

Acoustic Velocity of the Electron-Ion Gas Mixture 

Alfven Velocity of Entire Gas 

Alfven Velocity for Charged Particle Fluids 

Angle Between Direction of Wave Propagation and Applied 
Magnetic Field 

Mass Density of Electrons, Ions., or Neutral Gas 

Applied Frequency of Wave 

Electron or Ion Plasma Frequency 
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w 
C 

*T,L 

V ei 

V en 

V 
e 

V ie 

V in 

V. 
1 

v ne 

V ni 

V n 

Y 

wo 1 

wo2 

wo3 

Cyclotron Frequency of Electron 

Cyclotron Frequency of Electrons Associated with Transverse 
or Longitudinal Component of H 

Effective Collision Frequency of Electrons with Ions 

Effective Collision Frequency of Electrons with Neutrals 

Total Collision Frequency of Electrons (vei + ven> 

Effective Collision Frequency of Ions with Electrons 

Effective Collision Frequency of Ions with Neutrals 

Total Collision Frequency of Ions (vie + vin) 

Effective Collision Frequency of Neutrals with Electrons 

Effective Collision Frequency of Neutrals with Ions 

Total Collision Frequency of Neutrals (Vne + Vni) 

Specific Heat Ratio 
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Introduction 

Tanenbaum and Mintzer, 1 and Tanenbaum and Meskan 2 have conducted an 

intensive study of wave propagation modes employing the three-fluid theory 

for a partly ionized gas. Their study of small amplitude oscillations 

in an infinite, homogeneous , partly ionized gas with a uniform external 

magnetic field employed Maxwell's equations together with a set of 

coupled hydrodynamic equations for an interacting mixture of electrons, 

ions, and neutral molecules to obtain the dispersion relations for wave 

propagation perpendicular and parallel to the magnetic field. All the 

work done by Tanenbaum, Mintzer, and Meskan used approximate equations 

to obtain the possible wave modes for propagation of longitudinal waves 

parallel to the field and for propagation of coupled longitudinal and 

transverse waves perpendicular to the field. No attempt, not even approxi- 

mate, was made to obtain the general dispersion relation for propagation 

at any angle relative to the magnetic field. 

Dahl and Murphree3 considered the case of longitudinal waves pro- 

pagating parallel to the magnetic field, but this study also used some 

approximations. 

McClendon and Murphree4 conducted a study considering the propagation 

of coupled longitudinal and transverse waves with a transverse magnetic 

field. This study involved no approximations, and the wave modes obtained 

were the exact solutions to the dispersion relation for the case of 

coupled longitudinal and transverse waves with an applied transverse 

magnetic field. 

This paper will present the complete solution of the general dis- 

persion relation using numerical techniques. The solutions of the general 

dispersion relation, which are the complex wave numbers, are plotted in 
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terms of phase velocity and e-folding distance versus disturbance fre- 

quency for the frequency range, 10 -5 2 w 5 lo+' rad/sec. Comparisons 

with the previous works are included, and also, all discrepancies are 

poted. 

Theory 

The main objective of this wave propagation study is the deter- 

mination of the phase velocities and e-folding distances for all possible 

wave modes versus the disturbance frequency. 

The approach used in this study consisted of the small perturbation 

theory applied to a three-fluid partly ionized gas with the three fluids 

being electron, ion, and neutral gases. 

The assumptions were made as follows: 

1. Fixed degree of ionization 
2. Adiabatic 
3. All gases obey Ideal G'as Law 
4. The frictional forces between the gases, 

which cause damping effects, allow for the 
conservation of momentum of the total system. 

These assumptions are reasonable for any plasma which is near equilibrium 

and not too dense. 1 

The plasma can now be described completely by using Maxwell's 

equations, the conservation of mass, momentum, and energy equations for 

each species of gas (electron, ion, and neutral), and the equations of 

state for each gas. 

(1) Maxwell's Equations; 
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(2) Continuity Equation for each gas, 

DP e,i,n 
Dt = - pe,i,n V l ‘;ein , s 

(3) Momentum Equation for each gas, 

- vJ& 

(4) Adiabatic Condition (Ideal Gas), 

P 
e,i,n NiYi n = CONSTANT 

, , 

where, Y = c /c 
Pv 

To obtain the dispersion relation, a small periodic oscillation of 

frequency w is applied to the plasma, and the co-ordinate system is 

aligned such that propagation is in the X-direction and the applied 

magnetic field is given by ?? = ($, HG, 0). To include the periodic 

oscillations applied to the plasma, the variables are put in the form, 

Z(2, t) = 2 ,i(kx - wt) 

AA 
H(r,t) = $" + h e 

i(kx - wt) 

-c e,i,n(q,t) = Ge,i,n eickx - wt) 
N e i($,t) = No + ne i ei(kx - 

, , 

NJ%) = N1 + n ei(kx - ut) 
n 

P e ,(G,t) = PO + p, i ei(kx - 
, , 

Pn2,t) = P1 + P, e 
i(kx - wt) 

wt> 

wt> 
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Now, substituting successively each equation into the other; the twenty- 

one equations with twenty-one unknowns can be reduced to three equations 

with three unknowns. For the present study, the variables retained are 

v v ex' ey' andV ez' The resulting equations are given below, and 

Appendix A contains the substitution procedure followed in obtaining 

these final three equations which were derived previously by Tanenbaum 

and Mintzer. 1 

where, 

A 11 = (cl/m> - Cc3 c5/c1) + (w2w$nc2) 

Al2 = A2l = - w2aTwL/mc2 

'Al3 = i~w~[(c~/c~) - (c6/mc2)1 

A22 = (cZ/m) - (c4 c6/c2) + (w2$/mc2) 

A23 = -A32 = - (iwwL/c2) [c4 - (c,/dl 

A3l = iwwT[(c5/mcl) - (C4ic2> I 

A33 = A22 + (w2w$/mcl) 

and the c's are given by, 

c1 = u: - iwv ei + W2(venvni'Y2) 

2 -1 
c2 - = $(l - n ) - iwv ei + W2(VenVni/Y1> 

=3 
2 2 =w -u. 

1 
- K2Ui + iwvi -I- m2(Vinvni/Y2) 

2 2 -1 
c4 =&I - ~~(1 - n ) 

i + iwvi + W2(vinvni/Yl) 

=5 
2 =w -w 2 

e - K21J: + iwv, + ~J.I~(V~~V~~/Y~) 



2 -1 c6 = u2 - k?(l - n ) + iwv, + W2(VenVne/Y1) 

where, 

Yl = u2 + iwv, WT,L = e Ho /m c t,L e 

We,i = 

4re2No + 

(m ) 
0 

U 
e,i,n = (UP e,i,n'oe,i,n)' 

n = Kc/w 
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For a non-trivial solution to exist for the matrix equation, 

AV =O 
LI ,e 

(1) 

the determinant of the coefficients must be zero. 

IAl = 0 (2) 

Expansion of the determinant IAl yields the following dispersion relation 

in terms of the c's (See Appendix B for expansion procedure of IAl.>, 

2m 2 2 3 2 2 4 2 2 2222 c2c3c4c5c6 - m c3c4c5c6 - mc2c3C5 - 2mclc2c4c6 + m c1c4c6 

+ c2c4 + 2J-,2c c3 - u2tJ.12c2c c 12 T12 T 2 5 6 + mw2$c4c5c~ - m2w2a2c2c c T234 

:.I - 2m~~w+lc~c~c~ + m w WTc3cic6 + 2f~1~,2c~c~ - w2$ctCi 322 

22222 - m w wLc1c4 - 2mw2m2c2c c L235 t- m~2f$c3c5c~ + m3w2f.$cgc5c3 

+ 2,4,2,2c c TL12 - mw40.$$c4c5 - mw4w$$c3c6 + 04~$z?j - mw4$c4c6 

+ u4u4c2 Ll - mw4u4c c = 0 L35 (3) 

When fully expanded, by putting in the equations for the c's, the 

full dispersion relation would contain thousands of terms, and therefore, 

it is impractical, and probably impossible, to write out in full. But 

examination of the equations for the c's and the dispersion relation shows 

that it is an eight-ordered equation in K-square, and therefore, theoretically 
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eight wave solutions are possible. 

The general dispersion relation which has been obtained is a relation 

for the wave number (K) in terms of the disturbance frequency (w) for a 

given set of field conditions and for propagation at some given angle 

relative to the magnetic field direction. By solving for K as a function 

of w, the phase velocity (m/Kr) and e-folding distance (l/Ki) can be 

obtained for all possible modes of propagation at any angle relative to 

the magnetic field. 

The direction of propagation can be controlled by the longitudinal 

and transverse components of the cyclotron frequency. This is accomplished 

by varying the angle 0 between the direction of propagation and the 

direction of the applied 

0 =e$ 
C cm e 

WT = wcSIN(C) "L = wccos(o) 

Once the dispersion relation has been solved, the fluctuations 

magnetic field. 

p/gF; 

w 
C 

in Te are known for given time and position by using the following 

reiations, 
-iK.x 

V ex = Vexjo e ' COS(Krx - wt) 

V = Veylo e 
-iKix 

ey 
COS(Krx - wt) 

V = 'ez)o e 

-iKix 

ez COS(Krx - wt) 

Where, Vexlo, V 1 ey 0' and Vez>o are initial values. 

Appendix C contains the equations relating the other parameters 

6, 2, Ne i ns 9 , Vixs Viy, Viz, V,,, Vnys V,,) to the known solutions of 

v v ex’ ey’ and Vez. 
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Discussion 

A. Problems Involved 

Referring to the dispersion relation (3), it can be seen that two major 

problems will be encountered when an attempt is made to obtain the wave 

number (K) in terms of the disturbance frequency (w) for given field condi- 

tions. The first obstacle is the expansion of the equation, which up until 

the present has been considered almost impossible, and the second obstacle 

is the solution of the eighth-ordered equation once the expansion has been 

accomplished. 

From a cursory observation of the equation this would not seem to 

be as complex as might have been indicated above, but a closer observance 

shows that it is a totally impossible problem to approach by hand or with 

conventional computer techniques. 

To explain why the afore mentioned approach cannot be used, consider 

the first term of the general dispersion relation, 

2m2c2c c c c 23456 ' 

Since c2 contains eight separate terms containing several different 

variables, then ci will contain at least thirty-six separate terms. Also, 

'S and c 5 contain thirteen terms a piece, and c4 and c6 each con&in 

twelve terms. Allowing for the fact that a few of the terms in the 

different c's might be the same, a conservative estimate of the number 

of terms that would be present if the above expression was completely 

expanded is one hundred thousand (100,000) terms. Consider also that 

there are sixteen different variables present, and any one term of the 

100,000 terms could contain one or more of these variables. This should 

be satisfactory in explaining why the general dispersion relation was 

never ob,tained, or for that matter, could ever be obtained by a person 
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writing it out by hand. While the immensity of the equation is still 

being considered, it can be seen by careful observation that even computers 

with the most advance high speed printers' would take at least ten hours 

and fifteen thousand sheets of paper to print out the equation in its 

entirety. An equation of this magnitude could only serve to obscure any 

information which might be beneficial, and therefore, the total dispersion 

relation will never be printed out in the expanded form. 

Since the total dispersion relation containing the sixteen different 

variables cannot be written out completely as at first considered, the 

next approach to be considered was to put in all values for the field 

parameters except w, uT, and wL. This allows for the formation of a 

dispersion relation for a given set of field conditions, while retaining 

the ability to vary the disturbance frequency and direction of propagation 

relative to the magnetic field direction. 

Still the final dispersion relation would contain too many terms to 

consider expansion by hand or by use of conventional computer programming 

languages which require that all variables be assigned a numerical value. 

The problem of how to expand the dispersion while retaining some of the 

variables was solved when the PL/l FORMAC SYMBOLIC MATH FORMULA-MANIPULATION 

INTERPRETER was obtained from IBM Corporation. The capabilities of this 

system can best be explained by use of a direct quote from the FOBMAC 

language manual': 

The PL/l-FOBMAC interpreter is an extension of the 
OS/360 PL/l (F) Compiler. It consists of two modules 
of assembled routines, each module having about 70K 
bytes, which are added 'to a Systems Subroutine 
Library. FORMAC provides for the symbolic manipulation 
of mathematical expressions; e.g., the expression SIN(X), 
can be differentiated resulting in the expression COS(X). 
Expressions can contain variables, user-defined functions, 
constants to 2295 digits, and symbolic constants representing 
pi, es and 1. (the square root of -l>, as well as functions 
such as SIN, COS, EXP, etc. Expressions can be differentiated, 
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evaluated, replaced, compared, and parsed. Since FORMAC 
is a superset of PL/l, the facilities of PL/l are available 
for program structure, loop control, I/O, etc. FORMAC can 
be used to obtain symboiic solutions in problem areas which 
heretofore could only be approached numerically. 

B. FOBMAC Program for Expanding Dispersion Relation 

As explained in the quote from the FORMAC manual, the use of FORMAC 

-is confined to the OS/360 IBM Computer, and PL/l facilities are used for 

input-output and all loop control and program structure. 

The IBM 08/360-40 at Mississippi State University was used for 

all FORMAC runs. Due to the limited storage space at this facility the 

program was not the most efficient program, as far as time was concerned. 

The complete print-out of DISBEL, the dispersion relation expanding 

program, is given in Appendix D, and a brief outline of the program 

follows. 

DISREL (FOBMAC EXPANSION PROGRAM) 

(1) Read in all field parameters except cyclotron frequency 

and disturbance frequency as PL/l variables. 

(2) Multiply by length and time factors to obtain minimum 

range for coefficients Kn' s in the dispersion relation. 

(3) Transfer all PL/l variables to FOBMAC variables. 

(4) Define as variables all repeated multiplications, etc., 

to make program more efficient. 

(5) Obtain equations for numerators of the c's. 

(6) Obtain equations for denominators of the c's. 

(7) Define additional repeated terms to make program 

more efficient. 

(8) Obtain each of the twenty-five terms of the dispersion 
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(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

relation. w, UT, and w are still undefined 
I L 

numerically. 

Atomize all variables which are not needed for further 

computation to release the storage space which they - 

occupy in the computer. 

Obtain cyclotron frequency and multiply by time factor. 

Obtain mT and uL for given angle of propagation with 

respect to magnetic field direction. 

Obtain each of the twenty-five terms of the dispersion 

relation with all variables now having numerical values 

and sum to give total dispersion relation. 

Arrange coefficients of dispersion relation in descending 

order of powers of K. 

Punch out the coefficients to be used in program ROOTS. 

The units used for expressing field parameters were MKS, but 

leaving the variables in terms of meters and seconds usually gave a 

very large range for the coefficients of the Kn's. For the frequencies 

1o-5 to 10 -2 and lo6 to log, the range from the smallest to the largest 

coefficient was of the order 10 60 , and of course, this would present 

quite a problem when trying to solve for the roots of the equation. With 

careful selection of time and length multiplication factors, the range 

of the coefficients was decreased down to the order of 10 14 to 1028, 

depending on disturbance frequency. 

The equations for the numerator and denominator of each of the c's 

was obtained separately since the final dispersion relation was to be 

multiplied through by a common denominator to eliminate all denominator 

terms. 
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Each of the twenty-five terms of the' general dispersion relation 

was then obtained in expanded form, but o, mT, and wL were not defined 

numerically. Then for each given o over the frequency range 10'5 to log, 

the angle of propagation relative to the magnetic field, 0, was varied 

from 0' to 90'. mT and tiL were then determined since they are dependent 

on the angle of propagation. With the defining of w, uT, and oL over 

the ranges given above, each of the twenty-five terms of the general 

dispersion relation was obtained with all numerical values except K, 

the wave number for whose value the dispersion relation is to be solved. 

An example term is given below in both forms to show the importance of 

the FORMAC capabilities. 

TERM(13) = -.llSE-09 #I WL2 K2 -.171E-04 WI2 K2 +5.17 #I WL2 K4 

+767985 . WL2 K4 +964289. #I WL2 K6 -1112279 . WL2 K6 

-1396589 . #I WL2 K8 +100037 . WL2 K8 +505672 . #I WL2 K1' 

+438393 . WL2 K1' -.792 #I WI2 K12 -158732 . WI2 K12 

+.6383-21 #I WL2 +.9483-16 wL2 

FTERM(13) = -.9243-04 #I K2 +4158831. #I K4 +7.753+11 #I K6 -l.l2E+12 

ii1 K8 +4.063+11 #I Kl" -637647. #I K12 -13.7 K2 +6.2E+ll 

K4 -8.943+11 K6 +8,04E+lO K8 +3.52E+ll K 10 -1:27E+ll 

K12 +.513E-15 #I +.7623-10 

With the summation of the terms, the dispersion relation for a 

given set of field conditions at a given angle to the magnetic field is 

obtained for some given disturbance frequency. For example, consider 

the dispersion relation for propagation parallel to the magnetic field 

for the case w = 102, 



DISPER = 22161. #I K2 +4.263+08 #I K4 +1.043+14 #I K6 +3.83+18 #I 

K8 -5.423+18 #I Kl" +1.963+18' #I K12 +1.223+12 #I K14 

+274263. WI K16 +9496042. K2 +2.553+12 K4 +4.49E+16 K6 

+6.663+21 K8 -9.463+21 Kl" +3.493+21 K12 +2.17E+15'K14 

+4.883+08 K l6 +.0017 II +261.112 

This equation can be treated as an eighth-ordered polynomial in terms 

of K-square when extracting the roots, instead of a sixteenth-ordered 

equation in K. 

C. ROOTS, Program Used to Solve Dispersion Relation Pm- 

Having expanded the dispersion relation and obtained an eighth- 

ordered equation in terms of K-square, the only remaining step is to 

solve for the roots of the equation. 

In selecting a method for solution of the dispersion relation and 

in using computer defined functions, the large range of the coefficients 

becomes the dominating feature. Taking into account this large and 

variable range, and also considering that the dispersion relation has 

both complex coefficients and roots, the method of solution chosen was 

the Newton-Raphson Iteration Technique. 6 Since both overflow and under- 

flow occurred after only a few iterations, no computer defined functions 

were used, and all work was done in the double precision mode. 

The entire program with all the subroutines is given in Appendix E, 

and the main program ROOTS can be explained briefly as follows: 

ROOTS (Root Extracting Program) 

(1) Read in all coefficients of dispersion relation. 

(2) Read in time and length factors to be used to change 

units back to meters and seconds once the root has 

been found. 
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(3) Read in first root estimate. 

(4) Call subroutine for f(x) and f'(x), depending on order 

of equation. (x = K2) 

(5) Using the f(x) and f'(x), a,new estimate is obtained 

using the Newton-Raphson formula, 

f (Xi) 
"I+1 = xi - f'(Xi) 

(6) The above iteration is continued until 

error is less than or equal to 10 -20 . 

the relative 

(7) Call square-root program to obtain solution to K2. 

(8) Multiply by appropriate length factor so that Kr and 

Ki will have meters as unit of length. 

(9) Obtain phase velocity (w/Kr) and e-folding distance 

(l/Ki) l 

(10) Call synthetic division subroutine and divide out root. 

(11) Repeat above procedure starting with step (3) until 

all eight roots have been obtained. 

There are ten subroutines used in association with the main program 

and the function of each is as follows: 

1. ATWLTF - Arranges terms in ascending order. This allows for 

the retaining of as many significant digits as possible 

and is therefore very beneficial due to the large and 

varied ranges of values obtained from the dispersion 

relation. 

2. XPOCPX - Calculates the square-root of a complex number. It ' 

is used to obtain Kl and K2, once K-square has been 

obtained by Newton-Raphson method. 
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3. SYNDV - Synthetic division subroutine used to divide out 

each root as it is obtained. This reduces the 

order of the equation and assures that the Newton- 

Raphson iteration will not continue to iterate 

back to the same root. 

4. SECOND, THIRD, FOURTH, FIFTH, SIXTH, SEVENTH, EIGHTH - 

Subroutines used to obtain f(x) and f'(x) 

depending on the order of the equation being 

solved. 

Results 

The expansion and solution of the general dispersion relation was 

accomplished by employing the IBM 360-40 Computer for the FOBMAC program 

(DISREL) and the UNIVAC 1106 Computer for the program ROOTS. 

The ionospheric field conditions considered for this study were, 

= 1.1202 x 10 -4 
V ni coll/sec w e = 2.8806 x lo7 rad/sec 

V ne = 1.9375 x 10m7 coll/sec WI = 1.5731 x 10' rad/sec 

= 2.2541 x 10-l coll/sec e 
'in w 

C 
= 8.968 x lo6 rad/sec 

= 1.7263 x 10 -3 
'ie coll/sec iF= 5.1 x 10 -5 webers/m2 

V ei = 5.7783 x lo1 coll/sec u i,n = 8.5097 x lo2 m/set 

V en = 1.3072 x lo1 coll/sec 'e = 2.8158 x 10' m/set 

These are the same conditions employed by Dahl and Murphree3 and 

McClendon and Murphree4, but they do not coincide with the field conditions 

used in Tanenbaum and Mintzer's 1 and Tanenbaum and Meskan's2 qualitative 

and approximate analysis. 

Before a strict analysis is made of the results of this study, a 

brief explanation is needed in regards to the plots shown in Figures 1 
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through 14. The curves in these figures are shown to be relatively 

smooth, but at ,some angles, especially at 0 = 0 0 , there were several. 

e-folding distance points which were considerably different, and the 

phase velocity curves had one or two points that varied from the curves 

shown for 0 = 30° and 45O. The wave solutions whose phase velocities 

and e-folding distances varied from the curves shown were usually the 

sixth, seventh, or eighth root extracted from the dispersion relation, 

but in some cases the roots which were extracted third or fourth gave 

an erroneous e-folding distance. Since all numbers involved are quite 

large and varied, and since only five digits were retained from the 

FORMAC expansion program, it is possible that the error build-up in 

the program ROOTS is too extensive. The possibility that the points 

thought to be erroneous could be correct also exists since most occurred 

near significant points, such as collision frequencies, cyclotron fre- 

quencies, and electron or ion plasma frequency. So to make a statement 

concerning these points which do not coincide with the curves shown 

would require that additional dispersion relations be obtained for both 

the ionospheric field conditions used in this study and for other 

different ionospheric field conditions. 

Another point to be made before discussing the results is that 

all roots which yielded a'negative K i and a positive K were omitted. r 

The reason being that this represents a wave with increasing amplitude, 

and since our system assumed constant energy, this result is not physi- 

cally possible. Only the physically possible wave modes are shown, 

and in all cases, the three or four roots which resulted in physically 

impossible wave modes were complex conjugate of the acceptable modes of 

propagation shown in Figures 1 through 14. 
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A. Propagation Parallel to Magnetic Field Direction (0 = 0') - 

The wave solutions presented consist of both the pure longitudinal 

and the pure transverse wave modes with an applied longitudinal magnetic 

field. The term dominant wave mode refers to the modes of propagation 

whose e-folding distances are much greater than the e-folding distances 

of the other wave modes. Figures 1 and 2 present the solutions. 

w 5 vie: There are five possible wave solutions in this range, 

and Mode I can be neglected since it has an extremely small e-folding 

distance and phase velocity. The other four solutions are really two 

double roots, with Mode II increasing up to the phase velocity of Ui n. 
, 

Mode III, the other double root, increases up to the phase velocity 

equal to the acoustic velocity of the electron-ion gas mixture (Up). 

V ie <w<v.: el Five solutions exist, and Mode I, the single root 

solution, can still be neglected due to small e-folding distance. The 

double root solution, Mode II; with phase velocity equal'to Ui n is 
, 

.now the dominant wave mode since the e-folding distance for Mode III 

has decreased significantly. Mode III is a double root solution and 

the phase velocity has increased from U 
P 

up to v;. 

V ei < w < w.: 1 Only four possible wave modes exist within this 

range. Mode I, the solution neglected in the previous ranges, can 

still be neglected due to small e-folding distance. Mode II, the 

double root solution with phase velocity Ui n, is just a single root 
, 

in this range, and it is the dominant wave mode. Mode III, the other 

double root solution, has now split into two separate solutions, but 

neither wave solution is significant due to small e-folding distances. 

These are Mode III and Mode IV. 

w. <o<w: 
1 e 

Again five wave solutions exist, and although the 

phase velocity has increased tremendously for Mode I, it can still be 
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neglected since the e-folding distance is small. Mode II, the double 

root solution with phase velocity Ui n, exists, but one wave solution 
, 

has a very small e-folding distance and can be neglected. The other 

two roots which exist consist of Mode III, whose phase velocity levels 

off at the speed of light, and Mode IV, whose phase velocity approaches 

the speed of light. Mode IV can be neglected due to small e-folding 

distance. 

w>w: e Mode I, the dominant wave mode for this range, is 

propagating at the acoustic electron velocity (Ue). Mode III and Mode 

IV have phase velocities equal to the speed of light. Mode II, a double 

root solution with phase velocity Ui n, also exists, and one wave can 
, 

be neglected due to small e-folding distance. 

B. Propagation at Acute Angle to Magnetic Field Direction (O" < 0 < 90') -- 

All of the modes of propagation for the angles shown in Figures 3 

through 12 are quite similar, and therefore, only one case need be 

discussed. The case to be considered is 0 = 45'. 

w<v : ie Five wave solutions exist. Mode I, a single root solution, 

can be neglected due to extremely small phase velocity and e-folding 

distance. Mode II, one double root solution, levels off at phase velocity 

U i,n' while Mode III, the other double root solution, increases in phase 

velocity to U . 
P 

V ie <w<v : en Same set of solutions exist as in previous range. 

Mode I, the single root solution, can still be neglected. Mode II, the 

double root solution with phase velocity Ui n, is the dominant mode of 
, 

propagation. Mode III, the other double root solution, has an increase 

in phase velocity from U 
P 

to V'a and a decrease.in e-folding distance. 

V < w < w.: en 1 Four wave solutions exist, and Mode I, the single 
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root solution, can still be neglected due to small e-folding distance. 

Mode II, the double root solution with phase veloci,ty Ui n, has become 
, 

a single root solution and has a large decrease in e-folding distance; 

Mode III, the double root solution starting with phase velocity Vi, has 

.split into two separate solutions which have small e-folding distances. 

These are Mode III and IV. 0 

% <u<w: e Four wave solutions exist, and Mode I, the single 

root solution which has been neglected in all previous ranges, is still 

negligible due to small e-folding distance. Mode II, the single root 

solution with phase velocity Ui n, is also negligible. Mode IV, the 
, 

solution with phase velocity greater than the speed of light, is also 

damped out. Mode III, the only solution that is not damped out, levels 

off at phase velocity equal to the speed of light. 

W>W’ e' Four solutions exist, and Mode I, the single root solution 

neglected for w < w e, has leveled off at a phase velocity of Ue. The 

Mode II wave with phase velocity of Ui n is damped out. Mode III and 
, 

Mode IV exist with phase velocity equal to the speed of light. 

c. Propagation Perpendicular to the Magnetic Field Direction (0 = 90°) -- 

The wave mode solutions for the case of an applied transverse magnetic 

field consist of both the pure transverse wave and the coupled longitudinal 

and transverse wave. Figures 13 and 14 present the solutions. 

O(V ie' Seven possible wave solutions exist, and six of these 

are given by three sets of double roots. Mode I, the single root solution, 

can be neglected since both the phase velocity and e-folding distance 

are small. Mode II, the double root solution which levels off at phase 

velocity U i,n' is the most dominant wave mode. The other two sets of 

double root solutions, Mode III and Mode IV, have.increasing phase velocity 
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and decreasing e-folding distance as w increases. 

'ie < w < 'in' Seven wave solutions exist, and Mode I, the single 

root solution, can be neglected in this range. Mode II, the double 

root solution with phase velocity Ui n, is still the dominant wave mode. 
, 

Mode III, the double root solution which increases in phase velocity 

to u 
P' 

is also a prominent mode of propagation in this range. Mode IV, 

the third double root solution, can be neglected since the e-folding 

distance has become quite small. 

'in <w<v ei' Only six solutions exist, and as in the previous 

ranges, Mode I is negligible. Mode II, the wave solution with phase 

velocity Ui n, is a single root solution in this range. Mode III, a 
, 

double root solution, has an increase in,phase velocity from U to 
P 

greater than Vh. Mode IV, a double root solution, is still negligible. 

V ei < w < w.: 1 Five possible wave mode solutions exist, and Mode I, 

the single root solution, is still negligible. Mode IV is the only 

double root solution which still exists, but it is negligible. Mode II, 

the wave solution with phase velocity Ui n, and Mode III, the wave 
, 

solution with phase velocity greater than the speed of light, will both 

be damped out. But they are more dominant than the other wave modes. 

w. <wcw: Six wave solutions are possible. The Mode II wave 1 e 

propagating at velocity Ui n becomes a double root solution, but one 
, 

wave can be neglected due to small e-folding distance. Mode I and 

Mode IV, the single and double root solutions neglected previously, can 

still be neglected due to small e-folding distances. Mode III is dominant. 

w>w: Five solutions exist. e Mode II is the only double root 

solution, and one wave solution can be neglected since it is only a 

standing wave. Mode II has phase velocity of Ui n. Mode III, the 
, 

solution with phase velocity equal to the speed of light, still exists. 
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Mode IV, the double root solution neglected previously, is now a single 

root solution with phase velocity equal to the speed of light. Mode I, 

the solution which has been neglected for all w < we, exists and has 

phase velocity of Ue. 

D. Comparison of Results Obtained & Others and the Present Study - -- 

Figures 15 through 20 show the phase velocities of the wave solutions 

which exist.- All other modes of propagation have been neglected due to 

extreme damping or some other condition, such as increasing wave ampli- 

tude in constant energy system. 

Referring to Figures 15, 16, and 17, a comparison of the results 

for the case of longitudinal waves propagating parallel to the magnetic 

field can be made. Figure 15 shows the physically possible wave modes 

which are not damped out as found by Tanenbaum and Mintzer, 1 and Tanenbaum 

and Meskan. 2 Figure 16 shows the results obtained by Dahl and Murphree, 3 

and Figure 17 shows the results of this study. 

w- < v in' Mode I has phase velocity increasing up to Ui n for all 
, 

three studies. Mode II has phase velocity increasing up to U for 
P 

Tanenbaum's, et al., 192 study and Dahl's, et al., 3 study, but increases 

to a velocity slightly greater than U 
P 

for the present study. 

V in <w<w: 1 Mode I for all three studies has phase velocity 

remaining at U. . 

et a1.,lD2 l'n 

Mode II phase velocity remains at U for Tanenbaum's, 
P 

study and Dahl's, et al., 3 study, but increases up to U > U e 

for the present study. 

w f w.: 1 Mode I exists in all three studies and the phase velocity 

is equal to Ui n. Mode II exists only in the solution by Dahl, et al., 3' 
, 

and the phase velocity is still equal to U . 
P 

w. <w<w: 1 e Mode II phase velocity decreases down to Ui n, which 
, 
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is the same phase velocity as Mode I which still exists. This is true 

for all three studies. 

w>w: Mode I and Mode II exist for all three studies and have e 

phase velocity equal to Ui n. Also, Mode III exists for all three studies 
, 

and has phase velocity decreasing down to and leveling off at Ue, the 

acoustic velocity of the electron gas. 

Referring 'to Figures 18, 19, and 20, a comparison can be made of 

the results obtained by Tanenbaum and Mintzer, 1 McClendon and Murphree, 4 

and the present study for the case of coupled longitudinal and transverse 

waves propagating perpendicular to the magnetic field. 

w 5 vin: Mode I exists for all three studies and has phase velocity 

which increases up to and levels off at Ui n. Mode II also exists in 
, 

all three studies and for Tanenbaum's, et al., 1 study the phase velocity 

increases from Va up to VH. For McClendon's, et al., 4 study and the 

present study the phase velocity increases up to a value less than Ui n. 
, 

'in < w < w.: 1 Mode I has phase velocity of Ui n for all three 
, 

studies. Mode II for Tanenbaum's, et al., 1 study has phase velocity 

of v'. a For McClendon's, et al., 4 study the phase velocity also increases 

up to and levels off at V'a. For the present study the phase velocity 

increases up to VL, but for wi > w > 10, this mode of propagation is 

damped out. 

wzo: 1 Mode I still has phase velocity of Ui n for all three 
, 

studies. Mode II phase velocity decreases down to Ui n for all three 
, 

studies. 

w. <w<w: Mode I and Mode II exist for all three studies and 1 e 

have phase velocity of Ui n. Mode III exists only for the present study 
, 

and has phase velocity which decreases down to and levels off at the 

speed of light. 
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w>o: e Modes I and II for all three studies still have phase 

velocity of Ui n. Mode III has phase velocity equal to the speed of 
, 

light for the present study. For Tanenbaum's, et al.,' study and 

McClendon's, et al., 4 study, Mode III has phase velocity decreasing 

down to and leveling off at the speed of light. Mode IV for all three 

studies has phase velocity decreasing down to and leveling off at Ue. 

Conclusion 

The significance of this study is that the general dispersion 

relation considering small amplitude oscillations in a three-fluid 

medium has been expanded and solved without any approximations being 

made. Prior to this study, no solution, approximate or otherwise, had 

been obtained for the' general dispersion relation. 

With this capability of being able to solve equations of extreme 

algebraic complexity, the only obstacle which remains in the way of 

adding additional conditions to the original continuity, momentum, and 

energy equations is the tedious substitution procedure needed to 

eliminate all variables until only three equations with three unknowns 

remain. Any of the variables could be retained, and in this study, the 

three variables were the components of the electron fluid velocity. 

With the solution of the general dispersion relation for the 

complex wave number, the modes of wave propagation are known for any 

condition desired. The real and imaginary parts of the wave number 

provide a complete description of the wave propagation by giving the 

velocity and damping characteristics of each wave solution. 

Round-off error, due to the sources mentionedrpreviously, exists 

in the results of this study, but most of these inaccuracies can be 

eliminated by use of more efficient and accurate computer techniques. 
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Figures 15 through 20 show there is very good agreement between the 

results of this study and the work done previously by Tanenbaum, et al., 192 

Dahl, et al., 3 and McClendon, et al., 4 for the solutions which exist and 

have large e-folding distances. Exact agreement was not expected since 

there was error build-up in the method employed in this study and in 

McClendon's, et a1.,4 work. Although no error build-up should occur for 

the methods employed by Tanenbaum, et al., 1,2 and by Dahl, et al., 3 the 

dispersion relation which they solved was an approximation. The equation 

used by Dahl, et al., 3 and by Tanenbaum, et al., 192 is a third ordered 

equation in K-square. The exact dispersion relation is a fourth ordered 

equation in K-square and has quite a number of terms more than those 

shown in. the dispersion relation used by both Tanenbaum, et al., 1,2 

and Dahl, et al. 3 
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APPENDIX A 

The substitutiori procedure employed in the derivation of.the.deter- 

minant of the coefficients of V V ex' ey' and V ez' 

Maxwell's Equations, 

Continuity Equations, 

DP e,i,n - - p 
e,Ln 

V 
Dt "ein 9 , 

Momentum Equations, 

- ven($ - Q 

Ideal Gas Law, 

P 
e,i,n "i'i n = CONSTANT 

, , 

Now consider small perturbation, 

ti.n=?in 9 , ¶ , 

Nn = Nl + nn 

H‘ Go+,- 
P 

e,i = '0 + 'e i , 

'n = p1 + P, 

N 
e,i 

=No+n 
0 
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also, a a-0 
By=az 

Now, Maxwell's Equations, 

vxs = v& = 
. vxe = 1 ait 

-cat: 

(hx; + hyj + hzi;) 

(1) ah 
X. -= 

at 0 

(2) 
aEZ 1 shy 

cat =- ax 

(3) 
1 ahz ---z 
c at 2 

vx(ifo + zj = ? [(No + ni)$i - (No + ne)$L] 

+ i ai? -- 
C at 

- v&)i -I- (V’ - WY) 
f Y 

(4) 
aE; 

4reNo (Vix - V$> + at = 0 

(5) 
aE’ ah= 

4reNo(Viy - VLy> + 2 + cg- = 0 

(6) 
aE; ah 

4reNo(Viz - VLz> + at - tic 0 

Continuity Equations, 

& [me(No + n,)] + ?L l V[me(No + n,)] = 

- me(No + n,)V l c: 

ane 
me at - = - meNo(V 
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ane 
at” -No(V l +, 

ani 
at’ -No (V 

arm - = -Nl(V at 

(7) ane avkc at = -N OF 

(8) ani avfx 
at = -N 0 ax 

(9) arm avkc at = -N 15Z- 

Momentum Equations, 

w. + pe) 
me(No + ne> - Vei(T; - i?) - 

> 
+ %YHOZ - VLzHo 

y i+ ‘%20X - V&Hoz) A 
C C j 

+ 
(V&Ho, - V; Ho,) 

C 

- vei W$ - v;$ + (v’ - vgj + ‘Vz - v;z’i;] 
ey 

- ven [‘v;, - v;,>i + W’ - v;,>j + ‘Vz - v;z’i;] ey 

(10) avkc ape at + E [E: + ~'V;yHoz - V;ZHoy)] + 1- 
e meNo ax 
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+ Vei(Vi& - v&l + Veno& 

avf 
(11) s + k [E; -I- $(V;ZHox - 

e 

+ 'eicVLy - viy) + ven(v' 
ey 

(12) 
av:Z 
at + 5 [E; + $'V;xHoy - 

e 

+ 'ei@Lz - viz' + Ven(V;z 

- v;,> = 0 

%XHOZ)l 

- Vy) = 0 

vLyHoz)l 

- vz> = 0 

Likewise, 

(13) 

(14) 

(15) 

(16) 

07) 

(18) 

av;x api 
- - e [E; + f(V;yHoz - V;zHoy)] + L-- at mi 

miNo ax 

+ VieNix - v;,> + vinqx - VA,) = 0 

> - $ 1"; + &Hox - V;,H,,, 1 + vie(Viy - VLy) 

+ vin(v;y - WY) = 0 

av;Z 
- - e [EL + &Hoy - V;yHo,)] + vie(Vfz - V;=) at mi 

+ vinqz - VA=> = 0 

avlL -+&J+ lJne(Vx - at. “;$ + Vni(V& - v&l = 0 

av’ 
* + Vne (V’ ny 

- vLy) + vniqy - viy) = 0 

avf 
-JE + vne’Vz at - v;,, + Vnl(VAz - viz) = 0 

Using the relationship, 
1 ap u2 .an -- 
mN ax’NaX 



136 

And considering the form of the solution to be, 

.i(KX - wt) 

The eighteen equations now have the form; 

(1) 

(3) 

(5) 

(6) 

(7) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

hx = 0 

hZ = nE 
Y 

(2) hY = -nE z 
daeNoi 

(4) Ex = w (Vex - vix) 

E 
4aeNoi 

Y = w(l-n2) ('ey - 'iy) 

EZ = 
4aeNoi 

w(l-n2) ('ez - Viz) 

kNO mO 5 
n n e = W 'ex (8) i = --p V. 

1x 
(9) nn = w Vnx 

(v - iw)V - v V - v V e ex ei ix en nx -WV +EE Tez Ed 

iU2n k 
+ ;'=o 

0 

eE 
(v -iw)V -v.V. -v V e ey el ly en ny + ULVez + ;;;y = 0 

e 

eE 
(v -iw)V -v V -v V e ez ei iz en nz + WTVex - w v + $ = 0 

=eY e 

eE 
(v -iw)V i ix -v V WT 

ie ex -v V + in nx mviz -p 
i 

+ 
iU:nik 

No = 0 

(v - iw)V. - V. V - V. V wL eE 

i lY le ey In ny - mViz - $ = 0 
i 

w v. w v. eE 
(v 

z 
i - iw)V iz - v V - v ie ez V in nz 

-T+L2YLly= 0 m m m. 1 

(v - iw)V - v V - v V + 
iU2nk 

= 0 
n nx ne ex ni ix N1 

(v -iw)V -v V -v.V. =0 n ny ne ey nl ly 

(v -iw)V -v V -v V =0 n nz ne ez ni iz 
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Now, put in the values of E (Eqs. 4,5,&6) and ne i n (Eqs. 7,8,&g) and 
, , 

obtain, 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

iU2k2 iw2 
t-f+ + 5 + .v; - iw)Vex - VenVnx 

iw2 
- bei + l)vix --WV T ez = 0 w 

iw 2 iw 2 
tv e - iw + w(T-n2))Vey - ('ei + o(Y-nZ))Viy 

-v v en ny + ULVez = 0 

i.02 
(v - iw + e w(y-n2))Vez - ('ei + iL;i-n2))Viz - 'enVnz 

+wv T ex -wv =o 
L ey 

iU2k2 iw2 2 iw. 
t+ + + + vi - iw)Vix - bie + +)Vex 

- 'inVnx + 2 viz = 0 

iw : 
2 iw. 

t 
. 

w(l-n2) + vi - lw)viy - (Vie + w(;-n2))Vey 

wL v - 'inVny - F iz = 0 

2 iw. iw. 
t l w(l-n2) + vi - iw)Viz - (vie + w(l-n2))vez 

WT v - 'inVnz - F ix ,sv =o 
iY 

iU2k2 
'+- + vn - iw)vnx - v*eVex - VniVix = 0 

(v n - iw)V 
ny 

-,v v -v .v. =o ne ey nl ly 

(v n - iw)vnz - vneVez - VniViz = 0 

Now solve equation (16) fdr Vnx, equation (17) for V 
w' 

and equation 

(18) for Vnz, 

ma) v = % tvnevex + VniVix) nx 
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Wd Vny t ff (vneVey + "ni'iy) 

(Ha) v,, = ff ("neVez + "niViz) 

Pu,t equation (16a) into equation (10) and solve for Vix, w2,, 

C . I[ 
U2k2 - w2 + w2 - en"ne 

-iw 
te 

e 
vix = WLV 

Y2 i 
w 

w: 
- iWVei + 

en'ni 
Y2 

=5 iww 
(10a) Vix = - c Vex + T Vez 

1 =1 

Put equation (17a) into equation (11) and solve for V. , 
lY 

-iw 
v. = W2 (u 

lY 

[ . 

W2V 
e 

+ 
enVni 

(1-n') 
- iwv 

Yl ei I[ 

- iw 
e 

iw 2 iwv v 
+ e w(l-n ) - y': ne)Vey + wLvez] 

‘6 iww 
(lla) Viy = - c Vey 

2 
- --L vez 

=2 

Put equation (la& into equation (12) and solve for Viz, 

v = iz 
-iw 
w2v 

-w v 
L ey 

+ 
en'ni - iw\ 
Yl ei 

w2 w2v en'ne 
- w 2 

+ (vi + i Yl > v 
W ez 

‘6 iww 
-TV 

1WW 

(12a) Viz = - c Vez 
L + ---IV 

2 c2 ex c2 ey 

Put equations (lOa), (16a), and (12a) into equation (131, 

iw? iU2ki imw 
(v i - iw + L+ =5 

W 
-+, (- - vex 

=1 
+ -2 vez) 

=1 
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iw; 

- (Vie + yvex + 2 ( - z vez 
iwwT iWWL 

--v +- c2 ex c2 'ey ) 

ilJmT 

- 'in [v,p,, + Vni t- 3 vex + - = 0 
=1 =1 

(13a) w2ULwT v 
mc 2 ey 

+ 

Put, equations (lla), (12a), and (17a) into equation (14), 

tv i - iw 

- (Vie + 

+ 
iw: '6 

> t- - vey 
iWWL 

w(l-n2) c2 
- - V,,) 

"i 

iw: wL '6 
1 vey - ;;;- (- c vez 

iww, 
--v + 

dl-n2> 2 c2 ex =2 

iwvne iwv '6 iww 

- Vin 
v +A(--v - --L V,,) 1 = 0 

~1 ey Yl c2 f=Y c2 

t14a) (- 

iww 
+ '6 L \m - c4> vez = 0 

=, 

Put equations (lOa), 

tv i - iw + 

L 

(lla), (12a>, and (18a) into equation (15), 

iw: '6 iww . 

w(l-n2) 
) (- - vez - -2 vex + 7 Vey) 

=2 =2 

iw: WT '5 iww 
- (Vie + 

w(l-n2) 
) vez - ;;;- (- - vex + 

=1 
T v,,) 

=1 

+ " (- 2 vey - 2 V,,) - (iwv;fin) vez 

iovinvni '6 iwwT 

Yl 
(- - vez - - 

=2 =2 

tl5a) 

iWWL 
v +- ex =2 

Vey) = 0 

iWWL '6 
+ t-1 cc4 - y-1 v 

=2 eY 

c2 u2u2 
+ \m d&+ L iJ.12u2 T 

=2 mc 2 
+ *) vez = 0 

1 
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The original set of eighteen equations containing eighteen unknowns 

has now been combined into three equations with three unknowns. Equations 

(134, (144, and (15a) are three coupled equations for Vex, V and. ey ' ;- 

V ez' In matrix form these equations are given by, 

Where, 

=1 =3=5 lJ12u2 
*ll = F - T + mc2 

T 

U2ULUT 

*12 = - mc2 

*13 

U2ULblT 

*21 = - mc2 

c2 '4'6 + w2u2 L -- P 
*22 = iT c2 mc2 

iwo 

*23 = c2 
'6 - ---ii (c4 - ;> 

*31 
c5 =4 = iwwT (,,-,) 

12 

u2u2 u2fJ12 

*33 = 
c2 '4'6 + L ; 

(ii--- - 
T) 

c2 mc2 mcl 
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APPENDIX B 

The dispersion relation in terms of the C's is obtained by 

expanding the determinant derived in Appendix A. This is the deter- 

minant of the coefficients of V V ex' ey' and Vez, and to have a non- 

trivial solution the value of the determinant must be zero. 

*11 *12 *13 

*21 *22 *23 =0 

*31 *32 *33 

2 2 
*12*23(*31-*13) + *22(*11*33-*13*31' + *11*23 - *33*12 = ’ 

1st TERM, 

(A31-*13) = iuw, 

= iWW T 

A12A23(A31-A13) = (iww ) '4 '6 
- - - T (iu3u2 LWT) 2 mc 2 m2c2 2 1 

[ -+c6322 =5 
mc 1 mc 2 c2 =1 I 

2 
= -w4,2Tq 

[ 
=4=5 =3=4 2 2 + Z$$ _ Z$ _ - 

2 m clc2 m c2 mc2 mC1C2 
2 

_ '5'6 
3 2 

A-+ 
m =lc2 m3c3 

'4'6 + '3'6 
2 2 

2 
,2=3 

2 m =1=2 I 
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2c4c6 I -- 
m2c3 2 

2 
+ -c4c5-c3c6 

2 2 
+ 3+ '4 =3=4 

2 
m =1=2 mc 2 mC1C2 I 

2nd TERM, 

I 

=1=2 c u2fJ12 
x -- =1=4=6 + 1 L + u2012 '2'3'5 fA12fJ12 

-- 
2 mc 2 2 m mc 2 

m2T mcl + y 

+ =3=4=5=6 _ c c w2iA2 c c cL12fJJ2 u4,2,2 c3c5w2wi _ 3 5 T _ 4 6 T + T L + lA4u4 T 
2 m2c2 2 mc 2 2 m =lc2 I =1=2 mC1C2 

2 
mc 1 

=5 =4 [ I --- 
mc 1 =2 -*13*31 = - (iww,) (iww,) 

mc 1 mc 2 

'4'6 
9 

1 mc 2" 4 

= u2u2 c3c5 =3=4 ---- 
T 2 

'5'6 + 

mc 1 '1'2 m2clc2 

(*11*33-*13*31) = 
=3=4=5=6 -w2u2c c c c +2bl%l? T34+12 T 

=1=2 2 m 

'2'3'5 _ '1'4'6 W2U2C lJ14c412tJ12 u2Jc c 

+ 2 
Ll+ TL L35 

m c, m2c2 - n mC1C2 

,4,4-u2,2c c 
+ T T56 

2 
m =1=2 1 

c c2+2w2w2c +202,2c 
A 22 11 33-*13*31) (A A = l 2 

[ 

T2 Ll 
3 m 

L L 

3,4uw 
+ TL 

3 m c, 
L 

iJJ2u2c c u4,4-rJJ2,2c c T34+ T U4U4C lAAJ14u2 

3 

T56, Ll+ LT- 2c1c4c6 

mc 1 mc 1 m3c3 2 m3c3 2 m2 

2 -2w2+3c5-c2c3c5 _ 2~WC c 2ihJl2c c c 
+ T46- L146 

2 2 mc 1 mc 2 m2c2 2 

.6u4u2-u4,2fA2c c tJJ4u2u2c c 22 

+ TL TL56- T L 4 
3 2 m2c3 

6 + =1=4=6 
2 

m Y2 2 mc 2 



du2c c c2-w4b14c c -ld4u4c c 
+ T456 T46 2 2 L35, 2c3c4c5c6 

mc m c1c2 1 

2&A& c 

L 3 

c c 4 2 2, 

4 5 6-WuT% 3 

c lJ12iJJ2c 

+ 4, 3 

T 
c2c 2 2 

4 6-=3=4=5=6 
2 2 

mC1C2 =1=2 1 
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3rd TERM, 

%A3 - [ 
=1 'zT'+$y (iWWL)2 [$-&I m-- 

I f. I 
I - ,&3) I-S+- 

m C, mc, I I 

rc, c,c, lJ?fJJ$ 1 r: CI 2CLC c; 
$+- 

L I L -I L c2 mc ’ 2 m2c2 2 I 
u202c c2 w 

4222 
L16- WTWLC6 + 2u%?c c c L146 

m3c2 a m3c3 .-I m2c2 .7 
L L 

2u4u2u2c c u2u2c c c2 
+ LT46+ L356 

23 2 2 
m cm m c-c, f IL 

4222 
w 'TWLC4 2,vc c c c .L3456 

3 - 2 
mc 2 mC1C2 

L 
Ll12tJJ2c c2 L14 

2 mc 2 
w2u2c c2c 

+ L345 
2 

=1=2 1 
4th TERM, 

c2 u2u2 u2b12 '4'6 + L ; .T -w2uTwL 2 -- ( 
F - c2 mc2 mcl 1 mc > 

2 
lA4fJ12u2 TL &JJ4b12 LT d%.b4,2 TL 04u2u2c c TL46 

- - 
mc ,3=3 

3 3 2 + 
2 2 m =1=2 m2c3 2 1 

Combine all terma and multiply by (m3 cl ci), 

DISPERSION RELATION 

22 3 2 4 22 2222 2m c2c3c4c5c6 - m c3c4c5c6 - mc2c3c5 - 2mclc2c4c6 + m clc4c6 

24 + c1c2 + 2w 22 3 222 2222 uTc1c2 - w uTc2c5c6 + mw2wfc4c5ci - m w uTc2c3c4 

2mu 222 22 2 322 2 uLc2c3c5 + mw aLc3c5c6 t m w wLc3c4c5 + 201 
422 - aTwLclc2 
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422 mw uT"Lc4c5 ,422 mw wTwLc3c6 + 442 - 44 - w-wTc2 mw uTc4c6 + 4 4-2 - w wLcl 

44 - mw WLC3C5 - 0 
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APPENDIX C 

Once the wave number k has been obtained for given w, then the 

values for V V ex' ey' and V ez are known for any given time and position. 

To determine the values for the other parameters (hx, h 
Y' 

hz, Ex, E 
Y' 

' Z? Ne 1 n' 'ix' ' B , iY' 'iz' 'nx' 'ny' V,z), the following relations 

are used, 

V =V e-kix 
ex ex- 0 COS(krx-W) 

V =V. e 
-kix 

ey ey 0 
COS(krx-wt) 

V =v ez 
e-kix 

ez 0 COS(krx-wt) 

V c5 iWWT 

IX s - q ‘ex + 
-V 

Cl e= 

'6 v s--v 
iWWL 

-- 
iY 

V c2 ey c2 ez 

'6 iww 
v =--vez+Lv 

iww 

iZ =2 c2 ey 
- -2 vex 

c2 

V iw =- 
nx y2 ('ne 

I 

V iw =- '6 iWWL 

ny y1 v ('ne - 2 vey - - 
V c2 ez I 

V iW =- 
('ne 

'6 iWWL iWWT 

nz y1 
- 51 vez f - vey - - V 

=2 c2 ex 1 
Ex = 

i4neNo 

w(l-n2) ('ex - vix) 

i4reN 
E 0 

Y = w(l-n2) ('ey - viy) 
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EZ = 
i4neNo 

w(l-n2) 'vez - viz) 

hx =O 

h 
Y 
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APPENDIX D 

LISTING OF FORMAC EXPANSION PROGRAM 



148 

DISHEL: PROC OPTIONS(MAIN)I 
FORMACSOPTIONSi 

OPTSET(PRINTIi 
OPTSET(EXPNDiLINELENGTH=l20~.~ 

DCL SYSPNCH OUTPUT STREAM FILE1 
DCL(L,ME~MI,NEPNNPNI,M,MSQ,MCU) FLOAT DECIMAL; 
ON ENDFILE(SYSIN) GO TO QUIT; 

HEAD : GET DATA; 
/*ROUTINE TO CHANGE TO APPROPRIATE UNITS OF TIME AND LENGTH*/ 

IF FACTIME=O THEN GO TO SAME; 
IF FACTIME=l THEN GO TO DESIi 
IF FACTIME=2 THEN GO TO CENTIi 
IF FACTIME=3 THEN GO TO MILLIi 
IF FACTIME=L) THEN GO TO MINUS4; 
IF FACTIME=5 THEN GO TO MINUS5i 
IF FACTIME=6 ThEN GO TO MICROI 
IF FACTIME=7 THEN GO TO MINUS7i 
IF FACTIME=B ThEN GO TG MINUSBi 
IF FACTIME=9 THEN GO TO MINUS9; 
IF FACTIME=lO THEN GO TO MINUSlOi 

DESI: W=ku*l.OE-1s WE=WE*l.OE-11 WI=WI*l.OE-1; 
VEI=VEIdl.OE-ii VEN=VEN*l.OE-1; VIN=VIN*lrOE-18 
VNI=VNI*l,OE-li UE=UE*l.OE-1; UI=UI*l.oE-1; UN=UN*l.OE-18 
CL=CL*l.OE-li 

GO To SAME! 
CENTI: w=wl.OE-2; WE=WE*l.OE-2; WI=WIrl,OE-2i 

VEI=VEI*l.OE-2; VEN=VEN*l.OE-2; VIN=VIN*l.OE-2 i 
VkI=VNI*1aOE-2I UE=UE*leOE-2i UI=UI*1.0Ew2i UN=UN*l*OE-2; 
CL=CL*l.OE-2i 

GO TO SAMEi 
MILLI: W=w*l.OE-3; WE=WE*l.OE-3; WI=kI*l,OE-3; 

VEI=VEI*IrOE-3I VEN=VEN*lrOE-3i VIN=VIN*l*OE-3; 
VNI=VNI*lrOE-3i UE=UE*leOE-3i UI=UI*l.0E03i UN=UN*l.OE-3) 
CL=CL*l.OE-3i 

GO TO SAMEi 
MINUS4:W=ti*l.OE-4; WE=WE*l.OE-4; WI=WI*l.OE-4; 

VEI=VEI*l.GE-4; VEN=VEN*1*OEw4i VIN=VIN*l*OE-41 
VNI=VNI*lcOE-4; UE=UE*leOE-4; UI=UI*l.GE"4i UN=UN*l*OE-4; 
CL=CL*l.OE-4i 

GO TO SAMEi 
MINUS5:W=vv*l.OE-5; WE=WE*leOE-5i WI=WI*l,OE-5i 

VEI=VEI*l.OE-5I VEN=VEN*lrOE-5i VIN=VIN*leOE-5i 
VNI=VNI*l.OE-5i UE=UE*l.OE-$i UI=UI*l.OE-5i UN=UN*l*OE-5) 
CL=CL*1.0Em5i 

GO TO SAMEi 
MICRO: W=H*l*OE-6i WE=WE*leOE4i WI=WI*l.OE-6i 

VEI=VEI*L.OE-68 VEN=VEN*1.OE-6i VIN=VIN*l*OE"6D 
VNI=Vt~I*l~OE-6I UE=UE*l.OE-6i UI=UI*l.OE-6i UN=UN*leOE-6i 
CL=CL*l.OE-62 

GO TO SAMEi 
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MINUS7: w=W*l.OE-7I WE=WE*l.OE-7i WI=WI*laOE-7i 
VEI=VEI*l.OE-7i VEN=VEN*l.OE-7i VIN=VIN*l.OE-7; 
VNI=VNI*l.OE-71 UE=UE*leOE-7i UI=UI*l.OE-7; UN=UN*l.()E-7i 
CL=CL*l.OE-7C 

GO TO SAMEi 
MINUSO: W=W*l.OE-81 WE=WE*l.OE-8; h'I=WI*l*OE-6; 

VEI=VEI*l*OE-81 VEN=VEhJ*lrOE-8i VIN=VIN*leOE-8; 
VNI=VNI*l.OE-&I UE=UE*l.OE-8; UI=UX*lrOE-8; UN=UN*l.OE-8; 
CL=CL*l.OE-8I 

GO T0 SAMEi 
MINUSS: w=W*l l OE-9 i WE=WE*l,OE-9; WI=WI*1.OE-9i 

VEI=VEI*l.OE-9; VEN=VEN*l.Ok-9; VI~=VIN+loO&-9; 
VNI=VNI*l.OE-9f UE=UE*leOE-9; UI=UI*lsOEm9i UN=UN*laOE-9; 
CL=CL*l.OE-9: 

GO To SAME; 
MINUSlO: b=W*leOE-1Oi WE=WE*l*OE-161 WI=WI*l.OE-1Oi 

VEI=VEI*l.E-lOi VEN=Vl$N*l.OE-1Oi VIN=VIN*leOE-1Oi 
VNI=VNI*l.OElOi UE=UE*leOE-1Oi UI=UI*l,OE-lOi 
UN=UN*leOE-1Oi CL=CL*leOE-1Oi 

SAME: IF FACLEN=O THEN GO TO OKAYi 
IF FACLEN=- 1 THEN GO TO PlOi 
IF FACLENZ-2 THEN GO TO PlOOi 

IF FACLEN-3 THEN GO To PluOO; 
IF FACLEN=l THEN GO TO MlOi 
IF FACLEN=2 THEN GO TO MlOU; 
IF FACLENU=3 THEN GO TO Ktdi 
IF FACLEN=4 THEN GO TO MlOTO4; 
IF FACLEN=5 THEN GO TO MlOTOSi 
IF FACLEN=6 THEN GO TO MEGA; 

Plo: UE=UE*l.OkOli UI=UI*lmOEOl; UN=UN*l.OEOlI 
CL=CL*lrOEOli 
GO TO OKAY; 

p100: U&=UE*l.Ot02i UI=UI*l.OE02; UN=utq*lrOE02I 
CL=CL*l.OE02i 
GO TO OKAY; 

p1000: UE=UE*leOE03i UI=UI*l*OE03i UN=UN*l.oE03i 
CL=CL*l,OE03i 
GO TO OKAYi 

M10: UE=UE*leOE-li UI=UI*l*OE--11 UN=UN*l.OE-12 
CL=CL*l.OE-li 

GO TO OKAYi \ 
M100: uE=UE*le0E-28 UI=UI*l*OE-2) UN=UN*l.OE-2; 

CL=CL*l.OE-2i 
GO TO OKAYl 

KM: UE=UE*leOE-3i UI=UI*l*OE-3i UNrUN*l.OE-3i 
CL=CL*l.OE-3i 

GO TO OKAYi 
MlOT04: UE=UE*l*OE-4) UI=UI*l*OE-4i UN=UN*l.OE-4i 

CL=CL*l.OE-4i 
GO TO OKAYi 
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MlOT05' CL;CL~~=;J*$“‘-“; UI=UI*l.OE-5; uN=UN*1.OE-5; 
. - 

GO TO OKAY; 
MEGA : UE=UE*l.OE-6; UI=UI*l*OE=6I UN=UN*l.OE-61 

CL=CL*l.OE-6i 
OKAY: /* CHANGING PL/l VARIABLES To FORMAC VARIABLES */ 

LET{ WE=~WE~~WI=~WI~~UN=~UN~;UI=~UI=~~UI~;UE=I~UE~~W=~~; 
VEN=XV~N~~VEI=XVEIX;VIN=~VIW;VNI=XVNIX; 
ME=n~EnlMI=nMIaiH=nHn;C~=xCEX;CL=nCLn; 
NE=nNEn i NN=XNrda 1 i 

/* ,~~~‘~I’~“~::““‘,“~~~~~ TO RUN PROGRAM EFFICIENTLY */ 
i 

VIE =tVEI*NEkM*NI)I VtuE =(VEN*NE)/(M*NN)I 
VE =VEI+VENI VI=VIE+VIi'd; VN=VNE+VNIi 
UESQ=UE**2i uIsQ=uI**2; UNsQ=UN**2; 
ltvESQ=W~**2i kISQ=wI**2; CLSQ=CL**2; 
MSQ=M**2 i M$U=M**3; WTSQ=WT**21 
WTQU=WTSQ**2; WLSC=WL**2 i WLQU=hLSQ**2i 
WSQ=W*t*2 i wclJ=W*wSQ i bQUAD=h’SQ*+21 
w2WT2= WSQ*WTSQi 
W2WL2 = WSQ * WLSQ i 
W’+WTY = W2kT2**2 i 
w4wL4 = w2wL2**2 i 
W4WTL2 = WQUA0*WTSQ*WLSd 1 i 

VIE = ARITH(VIE)I 
VNE = ARITHtVNE); 
N I = ARITH(NI)i 

/* PRINT OUT tiASIC FIELD PARAMETERS AND INPUT DATA */ 
PUT LISTt’COMPLETL THREE-FLUID THE~KY DISPERSIOM EQUATION') 

PAGE i 
PUT EDITf'MAGNETIC FIELD STRENGTH=‘,H,‘WEBERS PtR SQ. METER’) 

(~KIP(~),A,E(~~,S)~A)~ 
PUT EDIT(‘PLASMA FREQUENCY OF ELECTRONS = ‘OWE) (sKiP(lwb 

E(12r5) 11 
PUT EDITt’PLASMA.FREQUENCY Of IONr; = ‘rW1) (SKIP(l),A, 

E(12'5))1 
PUT EDIT(‘COLLISION FREQUENCY OF ZLECTRoNS WITtI IONS=“VEI) 

(SKIP(l),AvE(12r5))i 
PUT EDIT(‘COLLISiON FREQUENCY OF ELECTRONS WITH NEUTRALS =” 

VEN) (SKIP(l)vA,E(12,5)); 
PUT EDITt'COLLISION FREQUENCY OF 10NS WITH ELECTRONS=“VIEJ 

(SKIP(l)tAvE(12~5))i 
PUT EDIT('COLLISION FREQUENCY OF EONS WITH NEUTRALS =‘vVXN) 

(SKIP(LJ~A,E(IZP~))~ 
PUT EDITI’COLLIS1ON FREWUENCY OF &UTRALS WITH ELECTRONS =‘P 

VNE) (SKIP(l)rA'E(12,5))i 
PUT EDIT('COLLISiON FREQUENCY OF ;.$UTRALS wIT13a IONS =‘vVNI) 

(SKIP(l)'A'E(12,5))I 
PUT EDIT(‘ELECTHON SOUNO VELOCITY = “UE, KETEHS/SECONU’) 

(SKIP(l),A'E(12,5)'A); 
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PUT EDITt'ION SOUNil VELOCITY 
(SKIP(l)'A'E(12'5)'A); 

= "US,' METERS/SECOND') 

PUT ‘EDITt’NEUTRAL SOUND VELOCITY = “UN” METERS/SECOND’) 
(SK~P(l)‘A’E(12’5)‘A); 

PUT EDIT(‘ELECTHON NUMBER DENSITY =“NE”NUMBER PER CUBIC 
METER') (SKIP(l)'A'E(12'5)'A),; 

PUT EDITt'ION NUMBER DENSITY="NI,'NUMBER PER CUBIC METER') 
(SKIP(l)'A'E(12'5)'A); 

PUT EOITt’NElJTRAL NUMBEK DENSITY =“riN, ‘NUMBER PER CUBIC 
METER') CSKIPCl,'AIECl2,5)~,-A~;- 

/* RELATIONS TO SHORTEN RUN 
LET( SUB1 = WISQ+VN; 

SW33 = VE + VNI SsUu"ef E 
SUB5 = (VE*VN)-(VEN*VNE’; 
SUE36 = (‘VI*VN)-(VIN*VNI) 
SU67 = (VEI*VN)+(VEN*VNI 

IME *c/ 
WESQ*VNI 
VI + VNI 
i 
i 

i 
SUB8< = WCU*CLSQ i SUd9 = WQUAD*CLSQ 1; 

/ ‘* OBTAIN EQUATIONS FOR JUST ‘THE NUMERATORS 0~ THE c’s 
SINCE THE DENOMINATOR WILL BE MLiLTIPLIED OUT IN THE 
FINAL DISPEitSION RELATION* THE FORM OF THE EQUATION 
IS AS FOLLOhrS: 

C(I) = A(I)*K**4 + tJ(I)*K**2 + D(I) */ 

LET( A(1) = 0.0 i 
A(2) = 0.01 
A(3) = UISQ*UNSQI' 
A(4) = 0.02 
A(5) = UESQ*UNSQI 
A(6) = 0.01 
6(l) = -(WESQ*UNSQ) + (#I*W*VEI*UNSQ) I 
B(2) = -(WSQ*CLSQ*Sufl7) + (#I*WCU*CLSQ*VEI) 8 

8(3)=(WISQ*UNSQ)-WSQ*(UNSQ+UISQ)-(#I+W)*(VN*UISQ+ 
VI*UNSQ) i 

B(4) = (wSQ*CLSQ*SU86)-(SUB9)-(uI*SU~8*SUB4~~ 
6(5)=(WESQ*UNSQ)-WSQ*(UNSQ+UESW)-(#f+W)*(vN*UESQ+ 

VL*UNSQ) i 
B(6) = (WSQrCLSQ*SUf35)-(SUB9)-(#I*SUBB*SUB3)1 
D(1) = WSQ*(WESQ+SUB7)+ #I*(W*suB2-WCU*VEI) 1 
D(2) = WSw D(1) i 

D(3)=WQUAD-WSQ*(WISQ+SUBg)+ #I* 
(WCU*SUB4=W*WISQ*VN) 8 

O(4) = WSQ 4 D(3) ’ 
D(S)=WQUAD-WSQ*(WESQhJ&)+ #I4 

(WCU*SUE3=W*WESQ*VN); 
D(6) = WSQ 4 D(5) )I 

/* DENOMIhATORS FOR C’S d 
LET( CDEM(l) = bUNSQ*K**~) + (WSQ+UI*W*VN) I 

CDEM(2)=(-WSQ*CLSQ-#I*W*ClSQ*VN14K**2 + 
(v&JJAD+#I*WCU*VN); 

CDEM(31 = CDEM(1) i 
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CDEM(4J = CDEMhJ i 
CDEM (5) = CDEMtlJ 
CDEM(6J = CDEMi2J 5; 

/* EQUATIONS FOR C'S WIT11 JUST THE NUMERATOR */ 
EQS: 0~ I=l. TO 6 BY 1 i LEf(I=nIn); 

LETt C(I) = A(IJ*K*+!i + S(,IJ*K**2 + D,(I) ,‘i 
ATOMIZEt A(I); tdtI)i D(I) ); 

END EQSi 
/* PREPARING TO OBTAIN EACH TERM OF DISPERSION RELATION 

As FUNCTION OF WtwTvbt WL. WLLECTING LIKE QUANTlTIES 
IN EACtt TtRM To r”rHKE PROGRAM F;OHE EFFICIENT. *,' 

LET( ClSQ = C(lJ**2i c2sQ = C(2J**2i 
c4sw = C(4,)**2; C~SQ = c(6)4421 
ClC2 = C(1J*C(2Ji c3c4 = c(JJ*c(L)Ji 
c3cs = C(3J*C(5)i C3C6 = C(3J*C(6); 
c4c5 = C(4J*C(5Ji C4C6 = CtLcJ*C(C,)i 
C4CGSQ ; Cr)C6**2i CbC6 = c(5)*c(6)2 
C2QU = C2SQ**2’; clc!c~g = CD~M(~J*CDEM(~)I 
C2DSQ. = CDEM(2)**21 C~DCZDCu = CIDC2D*C2DSQ i 
ClC2DSQ = ClDC20**2; C2DQUAD = C2OSQ*42 1; 

I* INDIVIDUAL TERMS 'OF DISPEHSION HELATION *I 
LET( TERM(l) = 2.0*MSQ*C2SQ*C3Cb*C4C6 i 

TERM(2J = MCU*C3CS*C4C6!iQ i 
TERM(3J = M*C2QU*CSC5 ; 
TERM(L)) = 2.0*M*ClSQ*C2SQ*C4C6 i 
TERM(S) = MSQ*ClSQ*C4CGSQ i 
TERM(6J = ClSQ*C2QU i 
TERM(71 = 2rO*W2WTZ*ClC2*C2SQ*ClDC20 i 
TERM(8J = W2WI2*C2SQ*CSC6*ClDC2D ; 
TERM(S) q M*W2WT24C4C6*C5C6*CIDC2D ; 
TERMtlCJ = MSd*WZWT2*C2SQ*C3C4*ClDC2D I 
TERMtllJ = 2.0*M*W2WT24ClG'*C4C6*ClDC2D ; 
TERhl(121 = MCU*W2WT2*C3C4*CQC6*ClDC2D i 
TERM ( 15 J = 2.O*W2WL2*ClSQ*C2SQ*C2DSQ i 
TERM(l4J = W~~~L~*C~S~~*C~~Q*C~DSQ i 
TERbI(lf-.) = MSQ*W2WL2*ClSQ*C4SQ*C21‘SQ) ; 

LET{ TERM(lt,J = 2.04~l*w2~L~*c2SQ*C3C5*C2~:)SQ ; 
TERM(17J = M*W2WL2*C3C5*C6SQ*CkDSQ ; 
fERM(18) = MCU*W2WL2*C3C4*C4CS*C2DSQ ; 
TERM<191 = ~.O~W~WTL~~C~C~*C~OC~CICU : 
TERM(2uJ = M*WYWTL2*C4Cs*CiDC2OCU i 
TERM(21J = M*W4WTL2*C3C6*ClDC2DCU i 
TERM(22) = W4WT4*C2SQ*ClC2DSQ ; 
TERM(23J = M*W4WT4*C4C6*ClC2DSQ i 
TERM{241 = W4r/L4*ClSQ*C2DQUAD ; 
TERM(25) = M*W~WL~*C~C~*C~DWUIID 1; 

/* ATOMIZING VARIABLES NO LONGER NEEDED. *I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

C4C6SQiC~C6iC2QUiC1DC2D~C~DSQiC~DC2DCU;ClC2DSQ~ 
C2DQUAD) i 
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./* DETERMINING CYCLOTRON FREQUENCY OF ELECTRON FOR USE IN. 
VARYING PROE;GATION DIRECTION RELATIVE To MAGNETIC 
FIELD. 

- (CE*H)/ME i /* H IN WEBERS PER SQ. METER 
I* TZ FOLLOWING CHANGES WC-TO CORRECT UNITS 0~ TIME *2 

IF FACTIME=O THEN WC=WCI 
ELSE IF FACTIME=l THEN WC=WC*1.0E-1; 
ELSE IF FACTIME=2 THEN WC=WC*l,UE-2; 
ELSE IF FACTIME=3 THEN WC=WC*lrOE-31 
ELSE IF FACTIME=r, THEN WC=WC*l.uE-4I 
ELSE IF FACTIME=S THEN WC=WC*1.0E-51 
ELSE IF FACTIME=6 THEN WC=WC*l.OE-6; 
ELSE IF FACTIML=7 THEN WC=WC*l,OE-71' 
ELSE IF FACTINk= THEN WC=WC*l.oE-8; 
ELSE IF FACTIME=9 THEN WC=WC*l.OE-9I 
ELSE IF FACTIME=lO THEN WC=WC*l.OE-10) 

LET( WC=nwCu)i 
/* PUTTING IN VALUES FOR WT AND WL ANDOBTAINING 

DISPERSION RELATION. ALSO, OBTAIN COEFFICIENTS OF 
POWERS OF K TO BE PUNCHED OUT FOR USE IN ROOTS 
PROGRAM. */ 

'CYCLOTRON: DO J= 0 TO 90 BY 15 i LET(J=nJnI# 
PUT'SKIP(6) 

PUT LISTt'ANGLE LETWEEN DIRECTION OF PROPAGATION AND 
MAGNETIC FIELD'); 

PUT EDIT(*IS EQUAL TO ~vJIQ DEGREES') (A,F(SV~)~AII 
IF J= O!J= 90 THEN GO ,TO NATi 
IF J=15 THEN GO TO FIFTEEN; 
IF J= 30 THkN GO To THIRTY8 
IF 3=45 THEN GO TO ANGLE45) 
IF J= 60 THEN GO TO SIXTY; 
IF J=75 THEN Go TO ANGLE751 

FIFTEEN: LET( REWT = WC*O.25882 f 
REWL = wc*o.9fa93 12 

GO TO DISi 
THIRTY: LET{ REwT = WC*SIND(J) 

REwL = WCwO.86603 f; 
GO TO DISl 

ANGLE45: LETt REWT = WC*0.70711 ; 
REWL = wc*0,70711 )i 

GO TO OISl 
SIXTY: LET( REWT = WC*O.86603 i 

REWL = WC*COSD(JI ); 

ANGiE75: 
GO TO DISi 

LET{ REWT = W&O.96593 i 
REWL = WC*O,25882 Ii 

GO TO DIS; 
NAT : LET( REwT = WC*SIND(JI : 

REWL = WC*COSD(J) )I 
DIS: LET( DISPER = 0.0 II 
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TERMS: d0 I= 1 TO 25 BY 1 i LET(I=nIm); 
LET(FTERM(1) = REPLACE(TERM(I)~WT#REWT~WL,REWL))I 
LET( DISPER = DISPER +FT@M(I) ); 

ATOMIZE (FTERM ( I) 1 i 
END TERMS; /* Now HAVE DISPERSION RELATION 

FOR GIVEN VALUE OF WTI wLr, & w. 41 
,/* NOW GET COEFFICIENTS OF K IN FORM To DE PUNCHED OUT 4/ 

LET( 2 = HIGHPOW(DISPER,K) i 
X = LOwPOW(DISPER,K) ); 

KCOEf: DO I = 2 To 16 BY 28 LET(I=nIn); 
LET( COEFK(1) = COEFF(DISf'ER,K**I) i 

COEFKI41) = COEFF(COEFK(I)t#I) ; 
COEFKR(1) = COEFK(1) - dI*COEFKI( I) 1: 
END KCOEF i 

/4fUT ,;;T;O;S;A;T,T;RM OF DISPERSION RELATION AS COEFK(O)4/ 

COEFK ; L! ) = REPLACE(DISPER,KtL) i 
COEFKItO) = COEFF(COEFK(O)*#I) i 
COEFKR(0) = COEFK(0) - #I*COEFKI(O) 1; 

/4 PUNCH OUT ALL REAL AND IMAGI>J,$RY COEFFFICIENTS OF EACH 
POWER OF Kt STARTING WITH HIGMST POWER* 41 

XPUNCH: DO I= 16 BY -2 TO 0; LET(I=nIa)l 
LET( COER=COLFKR( I) i 

CoEI= COEFKItI) 1; 
PLCOER= ARITH(COEK); 
PLCOEI= ARITH(COE1); 

PUT FILE(SYSPNCH)EDIT(PLCOER) (SKIP(l),E(l3r5)); 
PUT FILL(SYSPNCh)EDIT(FLCOEI), (SKIP(L),E(13r5))i 

END XPuNCH i 
END CYCLOTRON; 
GO TO READ; 

PlJT SKIP(l); 
QUIT: PtJT LIST('TtiATpS ALL FOLKS'); 

E.;i;rU DISKELi 
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APPENDIX E 

LISTING OF PROGRAM ROOTS 



156 

DIMENSION Al{201 
DOUBLE PRECISION A(201~FRE,FIM~FPRE~FPIM~XREIXXM,X2RE~ 

lX2IM,X3RE,XSIM,X4RE~X4IM,XSHE,XSZM,X6RE~XGIM~BRE~BIM~ 
2NUMHE~NUMIM,DEM,W,XBRE,XBIM,X7HE,X7IM,ERRORE~ERROIM~ 
3X~2o~,TEMP~FRT~~5~~FIT~3S),FPHf~35~,FPIT~35~~X8TR~~lO~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
SKIM(S)~PHSVE~5)~EFOLDO 

4000 READ(5v106) W,LEN,TYMEnFAC 
DO 1000 1=1,18 
READ(5vlOO) Al(I) 
A(I) = Al(I) 

1000 CONTINUE 
WRITE(6e105) WIFAC~LEN~TYME 
DO 20 1=1,9 
WRITE(6rllSJ A(2*I=l)vA(2*1) 

20 CONTINUE 
K =8 

2 READ(5rlOl) BREIBIM 
IF(BRE.EQ.99999.DO.AND.BIM.Ew3.9999.DO) GO TO 300 
WRITE(6t104) BREeBIM 
N=l 
1Ftit.EQ.B) GO TO 950 
IF(K.EQ.71 GO TO 951 
IF(K.EQ.6) GD TO 952 
IF(h.EQ.5) GO TO 953 
IF(h.EQ.4) Go TO 954 
IF(K.EQ.3) GO TO 955 
IF(K.EQ.2) GO TO 956 

950 CALL EIGHTH(BREeBIMvAvFRT,FIf,FPRTpFPITwMvL) 
GO TO 960 

951 CALL SEVEN(BRE,BIM,A,FRT,FIT,FPRT,FPLT,M1L) 
GO TO 960 

952 CALL SIXTH(BRE,BIM~A~FRT,FIT,FPRT,FPIT,M,L) 
GO TO 960 

953 CALL FIFTH(BRE;BIM~A~FRT,FIT~FPRT~FPIT~M~L) 
GO TO 960 

954 CALL FOURTH(BRE~BIMIAIFRT,FIT,FPHT,FPIT,M,L) 
GO 10 960 

955 CALL THIRD(BRE,BIMdi~FRT,FIT,FPRT~FPIT,M,L) 
GO TO 960 

956 CALL SECOND(BRE~BIM~A~FRT,FIT,FPHT,FPIT,M,L) 
960 FRE= OeO 

FIM= 0.0 
DO 15 I=l,M 
FRE = FRE+Ft?T(I) 
FIM = FIM+FIT(I) 

15 CONTINUE 
FPRE= 0.0 
FPIM= 0.0 
DO 16 I=l,L 
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FPRE = FPRE+FPRT(I) 
FPIM = FPIM+FPIT(I) 

16 CONTINUE 
NUMHE = (FRE*FpRE) + (FIM*FPIM) 
NUMlM = (FIbi*FPRE) - (FRE*FPIM) 
IF(tiUMRE.EQ.O.DO.AND.NUMIN.EQ.~aDO) GO To 4 
IF(FPRE.EQ.(J.DO,.OR.FPIM.EQ.O.DO) DEM= (FPRE**2)+ 

l'fFPIM**2) 
IF(FPRE.EQ.o.DO.OR.FPIM.EQ.O,DO~ GO TO 6 
DEM = (FPRE**2)*(1.DO+(FpIM/FPRE)**2) 

6 IF(FPRE.EQ.O.DO.AND.FPIM.EQ.u.DO) i$RITE(6#102) 
IF(FPRE.EQ.I~IDO.ANU.FPIM.EQ.~~.~O~ Gi) TO 2 
FRE = NUMRE/DEM 
FIM = NUMIM/DEM 
3RE = BRE-FKE 
BIM = BIM-FIM 
N = N+l 
IF(N.GT.300) GO TO 4 
IF(K.EQ.8) GO TO 950 
IF(K.EQ.7) GO TO 9Sl 
IF(K.EQ.6) GO TO 952 
IF(K.EQ.5) GO TO 953 
IF(K.EQ.4) GO TO 934 
IF(K.EW.31 GO TO 955 
IF(K.EQ.2) GG TO 956 

4 ERKORE = 0.0 
ERROIM = 0.0 
DO 17 I=lrM 
ERRORE = ERHORE+FRT(I) 
ERROIM = ERHOIM+FIT(I) 

17 CONTINUE 
280 WRITE(6vlOJ) 6RE~BIM~ERRORE~Ef’(KOIM~N 

CALL XPOCPX(lr2~8RE~HIM~KRrK~) 
DO 90 1=1,2 
KRE(I) = KR(I)*(lO.**(-LEN))/FAC 
KIM(I) = KI(I)*(lO.**(-LEN))/FAC 
PHSVEtI) = w/KRE(I) 
EFOLO(I) = IrO/KIM(I) 
WRITE(6rllO) KR(I)rKI(I) 
WRITE(6rll2) KRE(I),KIM(I),PHSVE(I),EFOLD(T) 

90 CONTINUE 
K = K-l 
IF(K.EQ.~) GO TO 957 
IF(K.EQ.0) GO TO 4000 
CALL SYNDV(A*BREIBIMIK) 
KJ=K+2 
DO 7000 I=lrKJ 
WRITE(6t115) A(2*I-l),A(2*1) 

7000 CONTINUE 
GO TO 2 
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957 Iii;; i NW;, 

A(3) = A(3) + (BRE*Af'l)-tl1M*~(2)) 
A(4) q A(4) +. (f3IM*A(l)+BHEsA(2)) 
BRE =-(A(l)*A(3)+A(2)4A(4))/(.A(l)**2+A(2)**~) 
t3IM = (A(2)*A(3)-A(.l).~~A'(4) )/(A(ll**2+A(2)**2) 

,ERRQRE=O l 0 
ERHOIM = 0.0 
N ='l 
GO TO’ 280 

100 FORMAT(E13.6) 
101 FOf~~AT(2Dl5.71 
102 FOl+lAT(’ ***** GERIVATIVE OF F(X)=0 It**** ‘1 
103 FORhAT( ‘0’ v) ROOT = ‘,2D14rh#’ ERROR = ‘@2014.6, 

3 ’ NUMBER OF ITERATIONS PERFORMED = ‘~13) 
104 FORMATS’-*p’ INITIAL ESTIMATE = '02014.6) 

105 FORMATf'l'e(ROOTS OF THE DISP~~RSION RELATION BY A 
INEWTON-RAPHSON ITERATION TECIIN~QUE~'/~O',' APFLIEO 
2 FREQUENCY = ‘vD12.6,’ LENGTH DIMENSION =‘,F3rl.b* 
310*4’,12,’ METERS’ I 
1 ’ TIME DIMENSION = lo**-,,12r' SECONtJS’/r 
1 '0'~' DISPERSION RELATION COEFFICIENTS 0 

lO6 FORMAT(L15.7e212vF3.1) 
110 FOHMAT(‘O’r’ K,= ’ # 2014.6) 
112 FORMAT(‘O’0 WAVE NUMBEI? = tt2Dl4.6,' l/METERS 'hot; 

1 ‘PHASE VELOCITY = ‘rDl4.6p’ E FOLDING 
2 DISTANCE = 'v 
1 D14*6) 

115 FORMAT(2E13.6) 
300 STOP 

END 

SUBROUTINE ATWLTF(NtX) 
C USED TO ARRANGE TERMS OF EQUATION IN ASCENDING ORDER. 

DOUBLE PRECLSION X(SO)rTEMP 
DO 20 I=lvN 
IPl = I+l 
DO 20 J=IPl,N 
IF(DABS(XfI)).LE.DABS(X(J))) GO TO 20 
;yy'; z ;;g 
X(J) = TEMP 

20 CONTINUE 
RETURN 
ENLi 
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SUBROUTINE XPOCPX(MeNeAeB,XR,XM) 

: 
THIS SUBROUTINE CALCULATES THE M/NTH ROOTS OF A 
COMPLEX NUMi3ER OF THE FORM ‘C = A + f*t3’. 
DOUBLE PRECISION A, 61 BAR, BETA, COEFe Kt PI, RMI RN@ 

1 XR(25)t ALFA, T, XM(25) 
DOUBLE PRECISION AAIBB 
AA=DABS(A) 
BB=DABS(B) 
RM =M 
RN = N 
PI z 3.1415926535897932400 
IF~AA~EQ~O~DO~OR~B~~EQ~O~DO~ BAR=DSQRT(A*+2+8*+2) 
IF(AA.EQ.O.DO.OR.BB.EQ.O.DO) GO TO 101 
BAR=DABS(A)*DSQRT(l.DO+(B~A~~*21 
IF(ti.LE.l.D-32) GO TO 101 
IF~DABS~DLOGlO~AA~-dLOGlO~B6~~.LE.4.DO~BAR=DSQRT~A~*2+ 

1 l3**2) 
101 COEF = BAR**(RM/RN) 

T= DATANE(B,A) 
IF (8 .LT. O*ODO) T = 2.0DO*PI - DABS(T) 
K = 0.000 
DO 100 I=l@N 
BETA = T + K*2.GDG*PI 
ALFA=BETA*RM/RN 
XR(I) = COEF*DCOS(ALFA) 
XM(I) = COEF*DSIN(ALFA) 

100 K = K + 1.000 
RETURN 
END 

SUBROUTINE SYNDV(AvBREvBIM,K) 
DOUBLE PRECrSION A(2O)eBRE,UIM 
J = 2*(K+1)+2 
DO 100 1=3rdv2 
A(1) = A(1) 
A(2) = A(2) 
A(I) = A(I) + (BRE*A(I-2).BIM*A(I-1)) 
A(I+l) = A(I+l) + (BIMrAtI-2)+8RE*A(I-1)) 

100 CONTINUE 
RETURN 
END 

SUBROUTINE SECOND(BREIBIM~AIFRT~FIT,FPRTIFPIT,M,L) 
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.DOUBLE PRECiSION BRE~BIM,A(~o~FRT(?@~~.FIT~~O~FPRT(~~)~ 
lFPIT(20) 

FRT(1) = Ajl)*((BRE+BIM)*(BRE-BIM)) 
FRT(2) = -A(2)*2.0*8RE*BIM 
FRT(3) = AtS)*BRE, 
FRT(4) =’ -A(4)*BIM 
FRT(5) = A(5) 
FIT(l) = A(1)*2.0*BRE*BIM 
FIT(2) = A(2)*((BRE+BIM)*(BRE-BIM)) 
FIT(3) = A(d)*'BIM 
FITt4) = A(4)*BRE 
FIT(S) = A(b) 
FPRT(1) = 2,O*A(l)*BRE 
FPHT(2) = -2rO*A(2)*BIM 
FPRT(3) = A(3) 
FPIT(1) = 2,0*A(l)*BIM 
FPITt2) = 2,O*A(2)+eRE 
FPITt3) = A(4) 
CALL ATWLTF(S,FRT) 
CALL ATWLTF(S,FIT) 

: 
=5 
=3 

RETURN 
END 

SUBROUTINE THIRD(BRE~BIM,A~FHT~FIT~Fpf?T~FPIT,M,L) 
DOUdLE PRECISION BHE~BIM~A(~~)~FRT(~~~~FITO~ 

*FPRT(20),FPIT(20) 
FRT(l)=(A(l)*BRE)*((BRE+DSQRT(3.O)*~IM)*~BRE~DSQRT~3.0~ 

l*BIM)) 
FRT(2)=(A(2)*BIM)*((BIM+DSQRl(3.~)*BRE)*(EIM-DSQRT(3.0) 

IraRE) I 
FRT(3) = A(3)*((BRE+BIM)*(BHE=BIM)) 
FRTt4) = -A(4)*2.O*BRE*BIM 
FRT(5) = At5)*BRE 
FRT(6) = -A(e)*BIM 
FRT(7) = A(7) 
FIT~l~=~A~1~*BIM~*~~DSQRT~3.~~*BREt~IM~*~DSQRT~3.O~* 

lBRE-HIM)) 
FIT(2)=(A(2)*BRE)*((BRE+DSQRT(3.0)*BIM)*~BRE~DSQRT~3.0~ 

1*6IM)) 
FIT(3) = A(3)*2.0*BRE*DIM 
FIT{41 = A(4)*((RRE+BIM)+(BRE-8IM)) 
FIT(S) = A(S)*BIM 
FIT (6) = A(6)*BRE 
FIT (71 = A(B) 
FPRT(l)= (3.O*A(l))*((BREtBI~~i)*(5RE~BIM)) 
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FPRT(2) .= -6rO*A(2)*8RE*RIM 
FPKT(3) = 2,04A(3)46RE 
FPRi(4) = -2rO4At414BIM 
FPRT(5) = A(5) 
FPIT(1) = 6.04A(l)*BRE4UIM 
FPIT(2.) = (3eO4Af2) )4( CRR~tU~M~41BKE-8I’M~) 
FPIT(3) .= 2,04A(3)*BIM 
FqIT(4) = ?.04A(4)*BRE 
FPIl(5) = A(6) 
CALL ATWLTF(7,FRT) 
CALL ATWLTF(7,FIT) 
CALL ATWLTF (‘5 I FPRT 1 
CALL ATWLTF(S,FPIT) 

fl 
=7 
=5 

RETuKk 
END 

SUBROUTINE FOURTH(BRE~HIM~AIFRT~FIT~FPRT~F~ITIM,.L) 
DOUBLE PRECISION BRE,BIM~A(~~I~FRT(~(,J),FPRT(~O)~FIT(~O), 

lFPIT(20) 
FRT(l)=(A(1~4BRE*42)4~~BRE+O%QHT(6.~)*BIM)4~~~~E~DS~RT 

1(6.0)*HIM)) 
FKT(2) = A(l)*(BIM444) 
FRT(3)= (Y.O*A(2)4~RE+BIM)4((BI~t~KE)) 
FRT(4)=(A(S)*BRE)*((BREtDSQKT(SIO)*~~~)*(~t~E~ljSQRT(~.O) 

146IM)) 
FHT(5)=(A(4)*DIM)*((DIM+DSQ~~~~3.0)4BRE)*~BI~-DSQRT~3.0~ 

l*WQi) I 
FRT(6) = A(S)*((BRE+BIM)*(DRE-RIM)) 
FRTi7) = -2mO*A(6)4BRE*BIM 
FRT(8) = A(714BRE 
FKT(9) = -A(B)*BIM 
FKT(l0) = At9.1 
FIT(l) =~Y,O~A~l~*BRE*BIM~*~~URE+HIM~~~~RE~~IM~~ 
FIT(2) =;A(~)*BRE*~~)*((ORE+D~~KT(~.~)*BIM)~(~~I~E~DSQKT 

1(6.0)*BIM11 
FIT(3)=(A(3)4BIM)*( (DSQRT(3.O)~*BREtHIM)*DSQHT(3.D)4 

lBRE=BIM)! 
FIT{41 = A(z)*(BIM*44) 
FIT(S)=(A(~)4BRE)*(CBR~~DSQRT’(3.0)4BIMj*(BRE-~S~RT(.3.0) 

l*BIci) 1 
FIT(61= "!6)4((BRE+BIMb(URE-BIM)) 
FIT t.7) = R(714BIM 
FIT(8) = A(B)*URE 
Ff’T(9) ;: A(10) 
FiT(10) -: 2.0*A(S)*BRE*BIM 
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FPRP(l)=(4.04A(1)4BRE)4~~BRE+DSQRT(3.O~*BIM~4~BRE~ 
fDSQHT(3.014BIM)) 

FPRT(2)=(4.04A(2)48IM)*((BfM+DSQRT~3.0)4BRE~4~B~M- 
lDSQHT(3.0)4kRE)) 

FPRT(3) = (3.04A(3))4((BRE+B~M)4~BRE~BIM)) 
FPRT(4) = 2.04At514BRE 
FPRT(5) = -2,04A(6)4BIM 
FPRT(6) = A(71 
FPRT(7) = -6rO*A(4)4BRE48IM 
FPIT~1~=~4.O4A~1~4~IM~4~~DSQRT~3.O~4BRE+BIM~*~DSQRT 

1(3.0)48RE-BIM)) 
FPIT(2)=(4.04A(2)4BRE)4~~BREtDSQRT(3.0~4BIM~4~BRE~ 

lDSWHT(3.0)4BIM)) 
FPIT(3) = (3,0*A(4))4((BRE+~IM)*(~RE=BIM)) 
FPIT(4) = 2,0*A(5)4BIM 
FPITZS) 
FPIT(6) 

==6i;;ft3)4BRE4BIM 

FPIT(7) = 2,04A(6)4bRE 
CALL ATWLTF(lO,FRT) 
CALL ATWLTFtlOtFIT) 
CALL ATWLTF(7,FPRT) 
CALL ATWLTFi7tFPIT) 

= 10 
c=7 
RETURN 
END 

SUBROUTINE FIFTH(BRE,BIM,A~FHT~FIT,FPRT,FPITIMIL) 
DOUbLE PRECiSION BHE~BIM,A(2UhFRT(20),FITo,FPRT(20)r 
lFPIT(20) 
FRT(1~=~A~1~4BRE443~4~~BRE+USQRT~lO.O~4BIM~4~BRE~ 

1DSQRT(10.0)4BIM)) 
FRT(2)= (t3IM444)4(5.04A(1)46RE-A(2)4BIM) 
FRT~3~=~5.04A~2~4BIM4BRE442~4~~DSQRT~2.0~4BIM+BRE~4 

l(DSQRT(2.0)4BIM-BRE)) 
FRT~4~=~A~6)4BIM~*~~BIM+DSQRT~3~0~46RE~4~6IM~DSQRT 

l(3.0148RE)) 
FRT(5)=(A(3)48RE442.)4~~BRE+DSQRT(6,0)*BIM~4~Bl~E~DSQRT 

1(6.0).4BIM)) 
FRT(6)= ~4.O4A~4~4~RE4BIM~4~~HIM+BRE)4~BIM-BRE~~ 
FHT~7~=~A~5~4BRE~*~~BRE+DSQR~:~3.0~4BIM~4~BRE-DSQRT 

1(3.0)4BIM)) 
FRT(8) = A(3)4(BIM*44) 
FRT(9)= A(7)4((BRE+BIM)4(BRE=BIM)) 
FRT(10) = -2.04A(8)4BRE*HIM 
FRT(11) = A(914BRE 
FRT(12) = -A(lO)*BIM 
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FRT(13) = A(111 
FIT~l)=(A(2)*BRE**3)*((i~RE+GSQRT(lO.o)*BIM~*~BRE~ 

lDSwKT(lO.O)*BIM)) 
FIT(2)= (BI~i**4)*(A(l)*BIM+SrO*A(2)*BRE) 
FIT(3)=(5.0*A(l)*BIM*BRE**2)*((BRE+DSWHT(2.~)*BIM)* 

*(BR~-DSQRT(2.O)*BIM) 1 
FIT(4)= (~.o*A(~)*~KE*BIM)*((BRE~BI~)*(BRE-BIM)) 
FfT!S)= (A(~)*BRE*42)*((DRE+BIM~*(BHE-BIM)) 
FITi = 2,O*A(7)*BRE*BIk 
FIT(7)=(A(S)*BIM)*((DSQRT~3.~)*BRE+BIM)*(~SQRT(3.[))4 

lBRE-BIM)) 
FIT(&)=(A(~)*BHE)4((BRE+DSQRT(3.O)*BI~).4(BRE-DSQRT 

1(3.0)+811Y)) 
FIT(g)= A(B)*((BRE+BIM)*(BKE-GIM)) 
FIT(10) = A(4)*(BIi'l**Y) 
FIT(l1) = A(S)*UIM 
FIT(l2) = A(lO)*BRE 
FIT(13) = A(121 
FPl~T(1)=(5.04A(1)*6RE**2)*((tiRE+DSOHT(6.O)*BI~)4 

~(BRE-DSQHT(~OO)*BIIJI)) 
FPRT(2) = S,O*A(l)*(BIM*4’+) 
FPKT(3)=(20.0*A(2)*BRE*HIM)4((BI~t~RE~*(BIM-Bf~E)) 
FPHT(~)=(~.~~~(~)*URE)*((~RE+~S~RT(~.U)~~I~~I)~ 

l(B~t-DSQRT(SoO)4~Id)) 
FPRT(5)=(4.~*A(4)4~IM)4((BI~+~SQ~T(3.~)4BRE)* 

~(BIM-CSQRT(~~O)*BRE)) 
FPRT(6)= (3.0*A(S))*(tBRE+BI~~)4~~~R~~~I~)) 
FPF<T(7) = -6.O*A(6)4BRE4BIM 
FPK’T (ti) = z~O*A(~)*BRE 
FPRT(9) = -2.U*A(ti)*BIM 
FPHT(10) = A(9) 
FPI~f~1~~~2~~0*A~1~*BIM*HREl*~~~R~+~~If~~~~BK~~RI~~~) 
FPIT(2)=(5.0*A(P)*~RE**2)*((~f~E+~S~RT(6.~)*BI~l)* 

l~~~~-DSOHT~6,0~4~1~~ 1 
FPIT(~)=(~.U*A(~)*~IM)*((DSOH~(~.O)*~~I~E+BI~)~~~SQRT 

1(3.u)*BRE-d~M)) 
FF’IT(4) = S.O*A(2)*(BIM4*41 
FP~T(~)=(~.L)*A(~~*~JRE~~((BRE+DSQRT~~.O)*~IM)~(BRE- 

lDSQHT(3.O)*tzJIM)) 
FPIT(6)= (3,04A(61)4( (BRE+BI~l)4(BR~-BIM)) 
FPIT(7) = 2rO*A(7)*BIM 
FPIT(6) = z.O4A(8)*BRE 
FPIT(9) = A(101 
FPIT(lO) = ~J.O*A(~)*BRE*BIM 
CALL ATWLTF(l3,FfqT) 
CALL ATULTF(13,FIT) 
CALL AT\~LlF(lOvFPRT) 
CALL ATwLT!=(lOvFPIT) 
M = 13 
L = 10 ..' 
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KETURN 
END 

SUbRoUTINE SIXTH(EHE~BIM~A~FRT~FIT,FpHTIFPIT,M,L) 
DOUdLE PliECfSION BHEIBI~,A(~!~)~FHT(~o),FIT(~~),FPRT(~~), 

lFPIT(30) 
FRT~1)=~A~l~*CIM**4~*~~DSQRT~l5.O~~Bt~E+BI~~~~DSQRT 

1(15,0)*BRE+IM)) 
FRT(2)=(A(l)*BRE**4)4((BREt~SQRT(1S,O)*HI~)*(BRE~ 

lDSQkT(15.l~)*BIMl) 
FKT~3)=(A(J)*BRE4*3)*((RRE+USQHT(lO.o)4BI~~~4~BRE~ 

1DSWkT(lG.O)+UIM)) 
FRT(4)=(A(4)*RiM**3)*( (DSQHT(lO..O)4BnE+DIM)*(DSQRT 

l(lo.O)*BRE-bIiv)J c 
FRTt5) = -6.04A(2)*6RE*(BIM**5) 
FRT(6) = -b.O*A(2)*UIM*(DHE**5) 
FRT(7) = 2U,O*A(2)4(BKE**3)*(i;IM**3) 
FRT(B)=(A(S)*~RE*42)*((~R~+~~~RT(6.0)*HI~)*(~RE- 

lDSQkT,(6.O)*bIid1) 
FRT(9) = 5.o*A(3)*URE4(UIM**q) 
FRT(10) = (4rO*A(6)*BRE*~~IM)n( (~IMt~~~E)*(RIM-BRE) 1 
FRT(11)~(A(7~*BRE~*(~RREt~S~~~T~3~0~4~j1M~*~BRE- 

1DSQKT(3.0)*tiIM)) 
FHT(12) = -~.04A(4)*BIM*(dRE*44) 
FRT(13)=(A(~)*BIM)*((BZM+DSQ~iT(3~0)4~~RE)*(BIM-DSQRT 

l(3.U)4ldHEIJ 
FRT(14) = A(9)*((BHE+BIM)*(~~E-~I~~)) 
FRI(15) = A(S)*(OIM**4) 
FRl(16) = -L.O*A(~~)*BRE~BIM 
FRT(1-I) = A(ll)*BRE 
FRT(18) ‘= -~(12)*BiM 
FRT(19) = A(131 
FIT(l) = tj.u4A(l)*BRE*(BIM**S) 
FIT(2) = ~~.o*A(~)*BIM*(BI<E**~) 
FIT(3) = -2~rO*A(l)*(BRE**3)*(BI~~*43) 
FIT(~)=~A(2)4EHE*44)*~~6HE+OSCRT~l5.0~4BI~~4~F~RE~ 

iDSQ~T(15.0)4BIM)) 
FIT(5)=(A(~)*UIM4~4)a((CSQRT(l5~~~4BREtBIM~4~~~~QRT 

1(15.0)4BRE-t~Ir~)) 
F~T(~)=(A(S)*~IM443)4( (D~MtI):;QRT(10.0)4F~iiF-)*(f~II\l- 

~DS~JHT(~~.~)*BRE)) 
FIT(7)=(A(4)4~HE4*~)4((BREt~S~~f~lO.O~4~1~~~~4~~~RE~ 

1()SQkT(~o.O)*f~fl?i)) 
FIT(B)=(4.04A(S)4BHE*BIM)4~~~RE~~I~~)4~BRE-uI~~)~ 
FIT(Y) = ~.~*A(~)*~IM~(HHE**I+) 
FIT(1o)=(A(~)4~RE4*2)4((~~~t~~~RT(6.0)4~1~~~)4(~RE- 

lDSQkT(h.~)*~IM)) . . 
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FIT~11~=~A~7~*BIM~*~~OSQHT(3+0~*BHE+aIM~~~OSQf~T 
1(3.O)*BRE-UlM)) 

FIT(12) = 5.O*A(4)*BRE*(BIM**4) 
FIT(lS)=(A(~)*BRE)*((~RE+~S~~T(3.O)*~IM)*(~R~- 

lDSQRT(3.O)*bIM)) 
FIT(l4) = 2.O*A(9)*8RE*BIM 
FIP(15) = A(lO)*((tjRE+BIM)*(;jfiE-BIM)) 
FIT(16) = Aui)*aIiv 

FiT(17) = A(6)*(tiIM**4) 
FIT(16) = A(12)*BRE 
FI'i ('19) = A(141 
FPR? (1) = 6.O*AW*(t~Rk**S) 
FPKT (21 = ~~IO*A(~)*RRE*(~IM**~) 
FPKT(3) = -6O.O*A(l)*.(BRE**3)*(DIM**2) 
FPKT(4) = -~eO*A(2)*(l3IM~*5) 
FPRT(5) q -3O.O*A(2)*UIM*(BH~**4) 
FPKT(6) = 60*0*A(2)*(BR~*‘2)*(~Ii~**3) 
FPRT(7)=(5.0*A(3)*~~E**2)*((BKEtDSWKT(6.O)*BIM)* 

1 (~KE-DSORT(6.0)*BlM)) 
FPRT (8) = S.O*A(3)*(RIM**41 
FPHT(9)=(20.0*k(4)*bKE*~IM)*((BIM+dRE)*(~IM-~RE)) 
FPH~T~lO~=~4,O*A~5~*BRE)*~~BKE+DS~RT~~~.O~~t~IM~* 

l(UH~-DSQRT(3rO)*BIi~)) 
FPHT(ll)=(4,O*A(6)*BIM~*((~I,~,~OS~~f~T(3.!~~~~RE~* 

l(BIi~-USURT(JrO)*RRE)) 
FPXr (12) = (3.0*A(7) )*((~RE+BlM)*(~R~-UIM)) 
FPRT(13) = -6.O*A(~~+BRE*UI~i 
FPR’f(14) = 2.O*(A(9)*BRE-A(li,)*UIM) 
FPRT(lS) = A(111 
FPIT'(11 = b.O*A(l)*(BIM**S~ 
FPIT(2) = 3O.O*A(I)*BIM*(tiR~**4) 
FPIT(3) = -bO.O*A(l)*(BRE**2)*(EIM**3) 
FPITt4) = 6.0*A(.?)*(BRE**5) 
FPIT(51 = 3G,O~A(2?*BRE*(UIM**4) 
FPIT(6) = -o0.O*A(2)*(UKE**3)*(BIM**2) 
FPIT(7)=(20.0*A13)*~RE*BXM)*((URE+UIM)~(i~t~E-BIM)) 
FPI1’(81=(5.0*A(4!*~RE**2)*( (t~T~E+~SuKT(h.O)*UIM)* 

1(BR~-DSQRT(b.O)*BIM)) 
FPIT(9)=(4.O)*A(5)*DIM)*((OS~RT(3~O)*URE+t~IM~*~DS~KT 

L(~.I,I)*BRE-UIM)) 
FPiT(10) = SoO*A(4)*(BIM+*4) 
FFIT(11)=(4.0*A(6)*BRE)*((ORL+DSQRf(3.O)*~~IM)*(8RE 

1 -DSdRTt3.0)*BXM)) 
FPIT(12)= (3.O*:A(8) I*( (ERE+bIM)*(BRE-RIM) 1 
FPI’I’(133 = ~.~:xA(~)*BRE*~JI~ 
FPIT(14) = 2rO.!:A(F)*BI;-1 + 2,0*A(IO)*BKE. 
FPI’f(15) = A(l%) 
CALL ATWLTF(L9rFRT) 
CALL. ATWLTF(lSrFITI 
CALL ATWLTF(lSrFPRT) 
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CALL ATWLTFtlSvFPITJ 
M = 19 
L = 15 
RETURN 
EN0 

SUBROUTINE SEVEN(BREPBIM,APFKTPFIT,FPHT,FPIT,M,L) 
DOUULE PRECISION 8RE~BIM,~~2oJ~FRT~35J~FIT~35J~FPRT~3OJ~ 

lFPIT(30J 
FRT(lJ = A(lJ*(EiRE**7J 
FRTi2J = -7.O*A(1J*BRE*(DIM+*6) 
FRT(3J = -2l.O*A(lJ*(BHE**5Jr(~I~~**2J 
FRT t4J = 35,0*A(lJ*(BRE**3J*(fiIM**4J 
FRT(5J = A(2J*(BIM*+7J 
FRT(6J = -7,O*A(2J*BIM*(BRE**6J 
FRT(7J = -2lrO*A(2J*(BHE**2J*(i3IM**5J 
FHT(8J = 35.0*A(2J*(BRE**4)*(~~1~**3J 
FRT(9J = A(3J*(bHE**6J 
FRTtlOJ = -A(3J*(BIM**6J 
FRTillJ = lS,O*A(3J*(BRE**2J*(aI~**4) 
FRTt12J = -lS.O*A(3J*(BRE**4J*(UIM+*2J 
FRTil3J = -6.O*A(4J*BRE*(BIM**5J 
FRT(l4J = ~0,0*A(.~.J*(BRE**3J*(bihh.*3J 
FRT(l5J = -~rO*A(4J*UIM*(aRE**SJ 
FRT(16J = A(SJ*(BRE**SJ 
FRT(17J = 5,0*A(SJ*BRE*(BIM**4J 
FfiTtlBJ = -1O.O*A(5J*(URE**3J*(hIM**2) 
FRT(l9J = -k(6J*(BIM**5J 
F‘HT(2t.I) = -5.O*A(6J*BIM*(BRE**Y) 
FRT(21J = 10,0*A(6)*(8RE**2J*(~I~**3J 
FHT(22J=(A(7J*BRE**2J*((~RE+USQRT(6,0J*~IMJ*(~RE- 

lDSURT(6.OJ*UIMJJ 
FRT(23J = A(7J*(BIM**4J 
FRT(24J=(4.0*A(8J*~RE*~I~J*((~IM+~R~J*(~IM-~REJJ 
FRT(25J=(A(gJ*BREJ*((~RE+DS~~~T(3.OJ*~IMJ*~~RE~OSQRT 

1(3.0J*UIMJJ 
FRT(26J=(A(lOJ*8IMJ*((BIM+DSBRT(3.OJ*~REJ*(~IM-DSQRT 

1(3.uJ*BREJJ 
FRT(27J = A(llJ*((BRE+BIMJ*(aRE-~Ij~JJ 
FRT(28J = -~~O*A(~~J*BRE*~IM 
FRT(29J = (A(~~J*~REJ - (A(luJ*BIMJ 
FRT(3OJ = A(15J 
FIT(l) = -A(lJ*(BIM**fJ 
FIT(2) = 7.0*A(lJ*dIM*(BREw+$J 
FIT(S) = -35.O*A(lJ*(BRE**4J*(l.i!IM**3J 
FIT(4J = 21.0*A(l)*~BRE**2)*(hiIM**5) 
FIT(S) = A(2J*tBRE**7J 
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FIT(6J = -2l.O*A(2)4(BRE~45)4(BfM**2) 
FIT(7) = ~S.O*A(~)*(BRE*~~)*(L~IM~*Q) 
FIT(d) ,= -7.O*A(2J*BRE4(BlM44o) 
FIT(9J = 6.~*A(3J*dRE*(BIM445J 
FIT(10) = -,iO.O*A(3J*(BRE*43)*(UIM**3) 
FIT(11) = 6.O*A(3)*BIM4(3RE445) 
FITtlE) = Ai4J*[BRE446J 
FIT(13) = -A(4)*(f%M446) 
FIT(lI0 = -15.04A(4)4(HHE*44)*(BZM**2) 
FIT(l5) = 15.04A(4)4(.BH~442)4(BI~*44) 
FIT(l6) = A(SJ*(BIM445J 
FIT(17) = 5.O*A(5J4BIM*(i3RE**+J 
FIT(lfj) = -AU.O*A(S)*(dRE4423*(UIM**3) 
FIT(l9) = A(6J*(BRE445J 
FITt20) = 5.04A(6)4BRE4(~IM*~Y) 
FIT(21) = -1O.O*A(~l4(t3RE443)*(bIM**2) 
FIT(~~)=(~.~J*A(~)*URE*BI;~).~~( (~RE+~lkJ*(RRE-HIM)) 
FIT(%3J=(A(~J*BHE442J4((BKE+~S~f~T(6.0)*BIM~J4~~~RE-OS~RT 

1(6.U)*BIM)) 
FI~'~~~)=~A~~~~BIM~*~~OS~RT~~.O~*BRE+~~I~~~~~SQRT~~.O~~ 

lBRE-BIMJ J 
FIT(25) = A(8)4(BIM444) 
FIT~26J~~A~1OJ4BREJ4((HRE~OS~~~~T~3~OJ4BIMJ4~~RE~DSQRT 

1(3.0)4BIM)) 
FIT(27)= A(121 4 ((BRE+BIM)*(~~HE-BIM)) 
FIT(2C3) = 2.0*A(ll)*BRE*BIM 
FIT(29) = (At13)4BiM) + (A(l+J*BREJ 
FIT(30) = A(16J 
FPIIT ( 1 ) = 7rO*A(l)*(URE446) 
FPHT(2J = -j’r04A(lJ*(BIMc*6J 
FPRT(3J = -105.04A(l)*(~RE4*~)4~~1~442) 
FPRT (4 J = 1~5.04A(l)*(~~~E*42)4(t~~~444) 
FPRT(5J = -~2.04A(2)4BIM*(t.~t~i**5) 
FPRT(6J = 140.04A(2)4(BRE443)4(UIM**5) 
FPHT(7J = -42.04A(2J*BRE*(Bl,:~**5) 
FPRT($J = ~.O*A(~J*(~RE*CSJ 
FPKT(9J = -b0.04A(3)4(tW4*3)4~BIM442) 
FPHT(10) = 30.04A(3J*BRE4(BI;~;444J 
FPRT(11) = -6.O*A(4J*(BIM**SJ 
FPRT(l2J = -~O.O~A(~J*BIY*(LHE**~J 
FPH’i (13) = bO.O*A(4J*(BRE442)*(BlM443J 
FPRT(l4J=~~.O*A(5J*BRE4*2J*((bHE+DSQRT(G.OJ4BIMJ4(BRE- 

lDSQHT(6.0J*bIMJJ 
FPF’T (15) = !j.O4A(5)4(UIM4*4) 
FPRT(16J=(2u.O*A(6J*~RE4~~IMJ4((BXM+UHE)*~Blt~~BREJJ 
FPHT(l7J=(4rO*A(7J*BREJ*((BR~+DS~RT(3.OJ4BIMJ4~Bf~E~ 

lOSQR7!3.0J4bIMJJ 
FPRT(l~J=(4.04A(BJ*BIMJ*((B~~~~+~S~RT(3.0)4~KEJ4~BIM~ 

~OSQKT(~.OJ*UREJJ 
FP~T(l9J=(3.04A~9JJ*((BRE+B~t~J*(BRE-BIf~JJ 
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FPHT(20) = -6rO*A(lO)~*BdE*BIrV1 
FPHT(21) = 2sU*((A(ll)rBRE)~(A(12)*BIM)) 
FPHT(22) = A(131 
FPIT(l) = 42oO*A(l)*BRE*(BIM**S) 
FPIT(2) =. -14O..O*A(l)*(BRE**3)*(BIM**3) 
FPJT(3) = 42.O*A(l).~BIM*(BRE**S) 
FPIT(4) = 7.O*A(2)*(BRE**6) 
FPIT(5) = -7rO*A(2)*(BIM**6) 
FPIT(6) = -1OS,O*A(2)*(BRE**4)*(BIM**2) 
FPIT(7) = ~~~.O*A(~)*(BRE**~)*(BIM**Q) 
FPIT(G) = 6.O*A(3)*(BIM**5) 
FPlT(Y) = 30.0*A(3)*BIM*(BRE**4) 
FPITtlO) = -6O.O*A(3)*(B~E**2)*(bIM**3) 
FPIT(l1) = 6.O*A(4)*(BHts+*5) 
FPLT(12) = -~O.O*A(~)*(HRE**~)*(~IM**~) 
FPIT(13) = jO,O*A(4)*BRE*(BI~~l**~) 
FP~T(~~)=(~O.O*A(~)~URE*BIM)*((GKE+RIM)*(~RE-BIM)) 
FPiT(15)=(5.0*A(6)*~f~E**2~*((~l~E+DS~~T(6.~)*~IM)*(~~E- 

l~S~~T(6.0)*~I$i)) 
FPIT~16~=~4.O*A~7~*8I,M~*~~DSQHT~3~~~*B~Et~IM~*~DSQ~T 

1(3.0)*6RE-BIM)) 
Ft’IT(17) = !s~O*A(6~*(8IM**4) 
FPIT(l6~=(4.O*A~~)*BRE)*((BHE+DSOKT(3.~)~BlM~*~~R~- 

IDSO~T(~.Q)*~IM)) 
FPIf~19~=~3.0*A~lO~~*~~~~~+BlM~*~~~E-til~~~ 
FPIT(20) = oe3*A(9)*BRE*BiM 
FPI’I (21) = (A(ll)*BIMl-(A(121*8Rt) 
FPIT(22) = k(l4) 
CALL’ATWLfFtSO,FRT) 
CALL ATWLTF(30eFJT) 
CALL ATWLTF(22tFPHT) 
CALL ATWLfF(22tFPIT) 

I! 
= 30 
= 2% 

RET URK 
ENO 

SUtiKQU’TINE ~IGHTH(URE~BIM~A~FHT,FIT,FPKT,FPIT,M,L) 
~OuijLt, PRECISION UKEIBIMIA(~U)~F~T(~~)~FIT(~O~~F~RTO~ 

lFPI'i.(2O),,X~TH(lO) tXBTl(lLI) ,>(7THIlO) ,X7T1(10) ,XhTR(lO), 
~XUR~,X~IM~X~KE,X~I~~~,X~~~E,X~X.~~~X~~.~~~:,XSIF'I~XL)~~E~XL)IM~X~~~E~ 
~X~PMIX~RE,XZIM,X~E,XIM 

C Tt3MS CWTAIIY~NG EACH POWER OF K 
3 XBTti(l) = -~O,O*(8IM**6)*(8~~~**2) 

X8Tkt2) = 7~.0*(61M**4)*(URE**4) 
XCITR(3) = o~B.O*(BIM**~)*(URE**~) 
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= BRE**8 
= l31M**8 

XBT1(1) = -8*Or(BIM**7)*BRE 
X8Tlt2) = 56.O*(BIM**S)*tBRE**3) 
X8TIt3) = -56.0*(BIM**3)*(BRE**S) 
X8TI(4) = 8,O*(BIM)*(BRE**71 
X?TH(l) = -7rO*(E!IM**6)*BRE 
X7TR’t 2 ) = 3SrO*(BIMI*4)*(BRE**3) 
X7TR(3) = -2l.o*(61M**2)*(BRE**5) 
X7TR(4) = BHE**7 
X7T1(1) = 21.0*(6IMt*5)*~BRE**2) 

.' X7TIt2) = -35rO*(BIM**3)*(BRE**4) 
X7?,(3) = 7,0*BIM*(BRE**6) 
X7TIt4) = -(BIM**7) 
XdTR(1) = 15,O*(BIM**4)*(BHE**2) 
;g;mt;g,’ = -15,0*~BIM**2)*~BHE**4) 

= idHE** 
X6TRf4) = -(BIM+*6) 
CALL ATWLTFtSrXBTR) 
CALL ATWLTF(4tXBTI) 
CALL ATWLTF(4tX7TR) 
CALL ATWLTF(4tX7TI) 
E&h ;T;LTF(4rX6TRJ 

-- - . 
X8Irui=OaO 
X7RE=OeO 
x7IIvI=o~o 
X6RE=O*O 
DO 35 I=l,S 
x8H1. = XBHE + XBTR(I) 

35 CONTINUE 
DO 36 1=1,4 
XBIM = XBIM + XBTI(I) 
X71M = X7114 + X7TItI) 
X6HE = X6RE + X6TRtI) 

36 CONTINUE 
X61M = 6.0D0*(EIM**S)*BRE - 20.0DO*(BIM**31*tBRE**3~ 

2 + 6eODO* BIM*(BRE**S) 
X~RE=~.O*(BIM**~)*BRE+(BRE**~)*((BRE+DSQRT(~O.O)*BIM)* 

l(BRE-DSQRT(lO.O)*BIM)) 
X5X~=~BIM**3l*~~BIi~+DSQRT~lO,O~*BR~~~~BXM~DSQRT~lO~O~* 

lBRE))+S.O*BIM*(BRE**4) 
XVRE=(BIM*~4)+(6RE~*2)*((BRE+DSQRT(6.O)*B1M)*(B~E- 

lDSWRT(6.0)*UIM)) 
X~IM=(~.O*BIM*BRE)*((BRE+BIM)*(BRE-6IM)) 
X3Rk= BHE*((BRE+DSORT(~.O)*~~M)*(BI~E-DSQRT(~.O)*BIM)) 
X31M = ~IML~~DSQRT~~~O~*BRE~~IM~*~USCRT(~.O~*BRE~~~I~~~ 
XZRE = (~RE+BIM)*(~~HE-BIM) 
X21M = 2.0Du*BIM*BRE 
XRE = BRE 
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XIMZ LiIM 
C TtLRMS OF REAL PART OF F (X1 

FR’I-(11 = A(l)*X8RE 
FRTt2) = -A(21*XBIiul 
FRT(3) = A(S)+X7RE 
FRT(4) = -A(4)*X7IM 
FRT(5) = A(!J)*X~RE 
FRT(6) = -A(6)*X6IH 
FRT(7) = A(‘7)*XSRE 
FRT(8) = -A(S)*XSIM 
FHT (9) = A(9)*X4RE 
FRT(lO)= -A(lO)*X4IM 
FHT(ll)= A(ll)*X3RE 
FRT(12)= -A(12)*X3IM 
FRT(13)= A(i3)*X2RE 
FHT(14)= -At14)*X2IM 
FH7 t151= A(15)*XRE 
FHT(lb)= -A(16)*XIi~ 
FRT(17,)= A(171 

C Tf?RMS OF IMAGINARY PART OF F(K) 
FIT(l) = A(l)*XOIM 
FIT{21 q A(cr)*XOt?E 
FITt3) = A(~)*x71M 
FITt4) = A(4)*X7RE 
FIT(S) = A(S)*X6IM 
FIT(6) = A(6)*X6RE 
FIT(7) = A(-/)*X5IM 
FIT(B) = A(&)*XSRE 
FITC91 = A(9)*X4IM 
FIT(lG)= AtiO)*X’4RE 
FIT(ll)= A(ll)*X3IM 
FIT(12)= A ( 12) *X3RE 
FIT(13)= A(13)*X2IM 
FIT(14)= A(l4)*X2& 
FIT(lS)= A(lS)*XIM 
FIT(l6)= A(16)*XRE 
FIT(17) = A(181 

C TERMS OF HEAL PART OF F’(K) 
FPRT(l) = 8,0*A(l)*X7RE 
FPRT(2) = -BeO*A(2)*X7IM 
FPRT(3) = 7,0*A(3)*X6RE 
FPRT(4) = -7eO*A(4)*X61M 
FPRT(5) = 6.0*A(S)*X5RE 
F?ti’i-(6) = -beO*A(6I*XSIM 
FPRT(7) = 5rO*A(7)*X4RE 
FPHil (8) = -SeO*A(B)*X4IM 
FPRT(9) = 4.0*A(9)*X3RE 
FPRTtlO)= -4eO*A(lO)*X31~ 
FPRTtll)= 3,0*A(ll)*X2RE 
FPHT(12)= -3.O*A(12)4X2Iy 
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FPRT.l13)= 2.O*A(131*XRE 
FPRT(l4)= -2eO*A(lY)~*XIM 
FPRT(‘15)= A(151 

C TERMS OF IMAGINARY PAR7 OF F@(t$) 
FPITtl) = B.O*A(l)*X7IM 
F-PIT(E) = drO*A(2)*X7RE 
FPIi(S) = 7,O*A(3)*X6IM 
FPIT(4) = 7.O*A(U)*XSRE 
F !‘,l T ( 5 ) = ia.O*At5)*XSIM 
FPIT(B) = b.O*A(61*XSRE 
FPIT (7) = 5.0*A(7)*X4IM 
FPIT(6) = 5.0*A(8)4X4HE 
FFJIT(9) = 4,o*A(9)*X3IM 
FPIT(lil)= 4,O*A(IO)*X3HE 
FPI’T(J.11= 3.0*A(ll)*nZIM 
FF'1.i (,L21= 3.0*A(12)*%2RE 
FPIT(13)= d.O*A(13)*XIfd 
FPIf(lYj= k!.O*A(14)*XRE 
FPIT(lS)= r\tl6) 
CALL AThLTFt17,FRT) 
CALL: ATbvLl'F(17,FIT) 
CALL ATWLTF(15rFPRT) 
CALL ATWLTFilS,FPIT) 
M = 17 
L = 15 
fZTijt?F.~ 
EW 
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CHAPTER IV 

ANALYSIS OF THE MIXED INITIAL-BOUNDARY VALUE PROBLEM 

FOR A THREE-FLUID PLASMA WITH A NUMERICAL EXAMPLE 

Billy H. Johnson and David L. Murphree 

NOTE: Figures, references and equations begin a new sequence in each Chapter. 
Also, the Appendices are lettered consecutively by Chapter, 
and each Chapter includes its own list of symbols. 
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LIST OF SYMBOLS 

ai 

a e 

a n 

Tt 

K 

KO 

m. 1 

m e 

m n 

Ni 

Ne 

Nn 

pi 

P e 

'n 

Ti 

Te 

T n 

?i 

Ge 

thermal speed of ions 

thermal speed of electrons 

thermal speed of neutrals 

magnetic field, weber/m2, B1i + B2j^ + B& 

speed of light, 3 x 1OB m/set 

fundamental electronic charge, 1.6 x lo-l9 coulomb 

electric field, V/m, Eli + E2j + E& 

current density 

Boltzman's constant, 1.38 x 1O-23 joule/OK 

permittivity of vacuum, 8.85 x lo-l2 cou12 - sec2/m3 - Kg 

mass of an argon ion, 6.73 x 1O-26 Kg 

mass of an electron, 9.1 x 10m31 Kg 

mass of a neutral particle, 6.73 x 1O-26 Kg 

ion number density 

electron number density 

neutral number density 

ion pressure 

electron pressure 

neutral species pressure 

ion temperature 

electron temperature 

neutral species temperature 

velocity of ions, m/set, u i Z + vlj + w,i; 

velocity of electrons, m/set, ueZ + v,j + w,i; 



176 

.A 

"n 
.(i> 

x (0 

,W 

eigenvalues of [A], i = 1,2,*:.,17 

finite difference approximation of A (i> 

permeability of vacuum, HIT x lo-' volt-see/amp-m 

'i ion mass density 

'e 

'n 

electron mass density 

neutral species mass density 

V ab effective collision frequency of species a with species b 

V’ ab average collision frequency of species a with species b 

CnD intersection of sets C and D 

CUD 

f& 

Subscripts 

k,e 

Notations 

l- 1 
A 

velocity of neutrals, m/set, uni + vnj + wni; 

finite difference approximation of Vti), 3. = 1,2,*-•,17 

union of sets C and D 

f plus its first and second derivatives are continuous 

x and t co-ordinates, + 
k,e 

= $(kAx, LAt) 

matrix, either square or column 

3-D vector 

column matrix 

line segment from point $ to point $' 
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INTRODUCTION 

The physical problem of this study is to analyze how introducing 

a disturbance, which results in waves propagating, affects a one- 

dimensional three-fluid plasma flow. Previous studies of waves in 

plasmas have fully explored the use of the linearized governing equations 

in terms of finding various velocities as functions of the frequency. 

In addition, studies using a fully ionized two-fluid model have been 

performed using the nonlinear equations. However, in neither case 

have the governing equations been actually solved given an initial 

equilibrium state and some forced disturbance at a particular point as 

a function of time. The purpose of the present study is to solve 

the governing nonlinear equations of the three-fluid plasma given an 

initial equilibrium state and some forced disturbance at a particular 

point as a function of time. The equations are then linearized and 

solved using the same initial state and forced disturbance. 

A partially ionized gas flowing in the x-direction which is com- 

posed of ions, electrons, and neutrals, all of which interact with 

each other through collisions, is considered. Thus a three-fluid 

mathematical model of the gas is chosen, where the three fluids are 

the ion, electron and neutral species. As previously stated, two 

separate models are considered. First, the nonlinear equations are 

used and then the linearized system of equations is considered. This 

linear system is obtained from the nonlinear equations. The numerical 

values of such quantities as collision frequencies, temperatures, and 

initial number densities, for the purpose of later solving a particular 
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example, are considered to be those which might exist in an ionized 

gas at atmospheric pressure. Additional assumptions are that each 

fluid obeys the ideal gas law and viscosity effects are negligible. 

As will be seen later, each fluid is also assumed to be isothermal. 

With this model of the plasma the dependent variables, which are 

all assumed to be functions of only the two independent variables x 

and t, become u., u u i e' n' vi, ve, vn, wi, we, and wn, which are the 

velocity components of the ions, electrons and neutrals in the x, y, 

and z directions; N i, Ne and Nn, which are the number densities of 

the ions, electrons and neutrals; and El, E2, E3, B2 and B3, which 

are the components of the electric and magnetic fields. 

Writing the continuity ,and momentum equations for.the ions, 
2 ' 

electrons and neutrals; Maxwell's equations; and the equations of 

state for each fluid, all in scalar form, a system of 17 quasi- 

linear first order partial differential equations which can be 

written in matrix form as shown, is obtained. 

[U,] + [Al [Uxl = [Bl 
where 

bJ,l = [$] and [Ux] = [g] . 

Similarly, a single matrix equation can be formed from the linearized 

system of equations. Since it is shown that the eigenvalues of [A] 

are all real and the corresp&ding eigenvectors are linearly inde- 

pendent, the system is classified as a hyperbolic one. 

A numerical solution of first the nonlinear system of equations 

and then the linear system, using the same initial values for the 17 

VJariables listed previously plus a forced disturbance at x = 0, is 

i,o be found. A comparison of these two solutions should then yield 
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some insight into the limitations of a linearized approach. The 

disturbance imposed, which is the specification of boundary values 

for some of the variables, is not arbitrary if the existence of a 

unique solution is desired. 

A finite difference technique is employed to find the numerical 

solutions of the two systems of equations for a particular example 

problem. The original system can be transformed in such a manner 

that the matrix [A] becomes a diagonal matrix by performing a trans- 

formation of the form 

Cul = [Tl [VI 
where [T] is an orthogonal matrix whose columns are composed of the 

unit orthogonal eigenvectors of [A]. It can be seen from this trans- 

formed system that the sum.of the time and space derivative tn each 

equation can be considered to be a time derivative along the charac- 

teristic associated with that equation. Two-point forward differences 

along the characteristic are then used to replace this time derivative. 

It is shown that this difference is the equivalent of the replacement 

of the original time derivative by forward differences and the spatial 

derivative by either backward or forward differences, depending upon 

whether the associated characteristic is positive or negative. The 

consistency, convergence and stability of the difference equations 

are then investigated. 
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LIT&ATtJRE REVIEW 

As previously stated, many studies, especially with the linearized 

equations, have been done in the area of plasma waves. Perhaps 

Tanenbaum and Mintzer' have presented the best linear analysis by 

assuming a partially ionized three-fluid mathematical model of the 

plasma. Harmonic plane wave solutions were assumed and expressions 

relating wave number and frequency were then obtained. A rather com- 

prehensive listing of other studies in this area is included in Ref. 1. 

Other authors, among them Adlam and Allen', Baiios and Vernon3, 

Montgomery4 and Saffman5'6 , have studied nonlinear waves in collision- 

free, fully ionized plasmas; i.e., the governing equations are not 

linearized. The major differences between these studies lie in the 

assumed direction of the applied magnetic field and in the neglect 

or retention of pressure terms in the momentum equations. In all the 

nonlinear studies encountered the physical situation was that of a 

disturbance traveling with a constant speed into an undisturbed plasma. 

Thus, the governing equations could be written in the reference frame 

of the wave and all time dependence was eliminated. 

No work in the literature has been found where the multi-fluid 

equations, either linear or nonlinear, describing a plasma flow were 

completely solved subject to particular initial values and boundary 

conditions. Thus, quite naturally, no comparison of the linear and 

nonlinear solutions of such a problem has been possible. 

Several authors have studied the mathematical aspects of the 

problem considered in the present study. Lax7 has a very good 
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discussion on the solution of hyperbolic systems of first order partial 

differential equations, 
8 

as does Jeffrey and Tanuiti . The latter, as 

well as Courant, Rees, and Isaacson' , gives a discussion of the develop- 

ment of a numerical solution of the pure initial-value problem for 

quasi-linear systems. Thom6e" employs a difference scheme to illus- 

trate the etistence and uniqueness of a solution of the mixed initial- 

boundary value problem for quasi-linear systems.,- The present study 

utilizes this particular scheme, with a discussion on how it is 

arrived at, to obtain a solution of an example problem. The conver- 

gence analysis given in Ref. 9 is applied to the particular diagonal 

system of eqnations with which the present study is concerned and the 

consistency and stability analysis is taken from Isaacson and Keller 11 . 
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SECTION I 

The problem of this study is to determine numerically how a. 

disturbance affects a one-dimensional three-fluid plasma flow. The 

mathematical model is formulated using first the three-fluid nonlinear 

governing equations and then the corresponding linearized system of 

equations. A comparison between the two cases is made for a particular 

example to obtain some insight into the limitations of a linearized 

approach. In this section the basic governing equations are obtained, 

subject to the various assumptions imposed upon them. This scalar 

system of equations is then cast into a single matrix equation and 

classified as to its particular type. A discussion of the mathematical 

problem follows. 

1. Basic Equations and Assumptions 

In this study the model of the fluid used is commonly called a 

three-fluid model. In this model the plasma is assumed to be composed 

of ions, electrons, and neutral particles which interact with each 

other through collisions. The degree of ionization is assumed to be 

fixed so that the three-fluid mixture can be described completely by 

Maxwell's equations, the transport equations expressing conservation 

of mass and momentum for each of the ion, electron and neutral species, 

and the equations of state for the three gases. The following assump- 

tions are made: 

(1) Each gas obeys the ideal gas law. 

(2) Collisional effects among the three interacting gases 
allow for conservation of the total momentum of the system. 
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(3) Each gas is inviscid. 

(4) Each gas is isothermal. 

The following set of equationsA is therefore used to describe the 

plasma. 

,(l) The Maxwell equations: 

(2) The mass transport equations: 

Dpi 
-+ Pi v Dt 

DPn 
-+p,v Dt 

l “, = 0 

(3) The momentum transport equations: 

DTi 
- = e (2 + Gl x G) 
Dt mi 

DGn "n - = - - - vne (iin - ee, - Vni(Gn - Cf, 
Dt P, 

(4) The equations of state:, 

‘e = N,KT, 

pi = NiKTi 
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'n = N,KT, 

where, as stated previously, Te, Ti, and Tn.are all equal to constants. 

The collision frequencies which are used (vei for electron-ion 

collisions, v in .for ion-neutral collisions, etc.) are effective colli- 

sion frequencies for momentum transfer between particles. If Vib is 

the average number of collisions per second which each particle of 

type a has with particles of type b, then the effective collision fre- 

quency for%omentum transfer can be expressed as' 

V ab = %vlb/(ma + %) 

As a consequence of this definition 

'aVab = Pbvba ; 

hence, there is no loss of total momentum in collisions among the 

particles in the fluid. 

If the additional assumption is now 'made that all dependent 

variables are functions of only x and t, and if 

Cl = In Ni 

52 = In N, 

c3 = In N, , 

then the vector equations can-be expanded into the scalar system 

below. 

Cl + ui51 + u. = 0 
t 1 

X X 

r2 + Ue62 + u = 0 
t e 

X X 

53 + l-93 + un = 0 
t X X 

(1.1) 

(1.2) 

(1.3) 
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U 
@t 

+ a;<2 + ueue = - p (El + veB3 - w,Bz) 
X X e 

+ Vei (Ui - Ue> + v,*(u* *- Ue> (1.5) 

U =v 
*t 

+a:53 +uu 
nn ni i (u -un)+V ne Cue-",' (1.6) 

X X 

Vit + UiVix = k (E2 + wiBl - uiB3) + vie(ve - vi> + Qin(vn - Vi) (1.7) 

V 
et 

+ UeVe = - + (E2 + weB1 - ueB3) + vei(vi - ve> 
X e 

+ v,,‘“, - ve> 

V 
nt 

+ u*v* = Vni(Vi - VJ + vne(ve - V*> 
X 

W. 
It 

+ UiWi = k (E3 + uiB2 - viB1) + viehe - wi) 
X 1 

+ v)inbJn - wi) 

W 
et 

+ UeWe = - 5 (E3 + u,B2 - v,Bl> + veibi - we> 
X e 

+ ven(wn - We> 

W + u w = v . (w 
nt n nx *= i - w*> + v (w - w*' ne e 

El 
t 

+ he + ui& = c2u,e(ue exprl - ui exp32) 
X 

E2 + c2B3 
t 

= c2poe(ve exp52 - vi exp-31) 
X 

E3 - c2B2 
t 

= c2v,e(we exp3.2 - wi exp51) 
X 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(1.15) 
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BP -E3 -0 
t X 

B3 +E2 =-0 
t X 

(1.16j 

(1.17) 

KTi where a2 = - KTe 
i "i 

,a&- KTn 
e m 

,a2=- 
nm l 

e n 

The reason for assuming that each gas is isothermal and then for writing 

the equations in terms of the natural log of the number densities will 

be discussed in a later section involving the transformation of the 

equations into a diagonal form. 

The system of equations (1.1 - 1.17) is composed of the full non- 

linear governing equations. It is now desired to linearize the system 

by replacing each dependent variable by some constant part plus a 

fluctuating component; i.e., 

$(x,t> = e. + 0’ (x,t) 

where the fluctuating component $I' is assumed to be small enough that 

second order terms can be neglected. In .order to have the same form 

as the non-linear system, let 

3; = N'/N i i. ' 

3; = N;/Ne 
0 

and 

rS = N;/Nn . 
0 

Thus, the linear system becomes: 

6 t 
+ uio5;x + “;, = 0 (1.18) 
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t 0 x e X 
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(1.19) 

< 
3; + u* 5; + u; = 0 (1.20) 

t 0 x X 

+ a25' i lx + ui u; : 0 x 
= e (El + vi B3 

0 0 0 
- WloB20 + E 

+ vi B; + B3 v; - wi B; - B2 w;) 
0 0 0 0 

+v ie(ueo - ui + us - u;’ 
0 

+v incuno - ui + u; - $1 (1.21) 
0 

U’ 
et 

+ ai3.l 
X 

+ueu; =-E(E1 
0 x 

+veB3 -w 
e 0 

eB2 +Ei 
0 0 0 0 

f ve B; + B3 vi - we B; - B2 WA) 
0 0 0 0 

+ Vei(Ui - ue + u’ - u’) 
0 i e 0 

+ ven(u n - u + u’ - u’) e n e (1.22) 
0 0 

u' 
*t 

+ ai3; + u* u; = v (u - u + u' - u') 
X 0 x ni i n 0 i n 0 

+ v (u - u + u' - u') ne e n e n (1.23) 
0 0 

Yit + uiov;x = fq (E2 + wi B1 - ui B3 + E; + Blw; - ui B; 
0 0 0 0 0 

- B3 $1 + viehe y v + v' - v') 
0 0 i. e i 

+v incvno - vio + VA - v;> (1.24) 
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V' 

et 
+ ue v; = - + (E2 

0 x 
+ we B1 - ue B3 + E; + Blw:, 

e .O 0 0 0 

-U e Bi 
0 

- B3 I?) + vei(vi - ve -I- v; - vi> 
0 0 0 

+ ven<vn - v + v' - v;> e n (1.25) 
0 0 

V' 

*t 

+u*v,: =v (v -v +v'-v') 
ni i n 0 x in 

0 0 

+ v,,'", - v + v' - VA> n e (1.26) 
0 0 

W: + 
It 

ui w' o ix = k (E30 + uioB20 - Blvio + E; + ui B; + B20u; - Blv;) 
0 

+ Vie(We - wi + w' - WI) + v. (w 
e - w. 

0 0 
in n 1 

0 0 

+ w; - w;> (1.27) 

W’ 

et 
+ ue WA 

0 x 
F (E3 + ue B2 - Blve + E; + ue B; + B, u' 

e e 
0 0 0 0 0 0 

- Blv;) + vei(wi - we + w; - w;) 
0 0 

+ ven(w 
n - w + w' - WA> e n (1.28) 

0 0 

1 w 
*t 

+u*w; =v (w -w +w'-w') 
ni i n in 0 x 0 0 

+ Vne(We - w + w' - WA> n e (1.29) 
0 0 

EI 
t 

+ hi + ue >E; = c2poe(ue N 
0 0 x 0 i. 

+ ueo'ioS; ~ "ioU~ 

- Ne u o i. - UioNeoS; - NeoUi) (1.30) 
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,E; + c2B; 
t 

= c2poe(ve Ne -t ve Ne 3; + Ne vi 
X 0 0 0 0 0 

- NioVio - vi Ni 3; - Ni v;) 
0 0 0 

E; - c2B; 
t 

= c2poe(we Ne + we Ne i$ + Ne w; 
X 0 0 0 0 0 

- NioWio - wi Ni 3; - Ni w;> 
0 0 0 

B; -E; =0 
t X 

B; +E; =0 
t X 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

2. Matrix Formulation and Classification of the Equations 

Equations (1.1 - 1.17) comprise a non-linear scalar system of 

seventeen first-order partial differential equations involving the 

seventeen unknowns 5,, 5,s 5,s uis ue, un, vi, veg vns wi) we, wns El, 

E,, E3, BP, and B3. B1 is a constant and thus is known. The above 

equations are now cast into a single matrix equation so that they can 

be transformed into a diagonal system. It can easily be seen that these 

equations may be written as 

[U,] + [Al [Uxl = [Bl (1.35) 

with 

[Al = [A] (cUl> and [B] '= [B] (bJl> 

where [u] and [B] are column matrices and [A] is a square 17 x 17 

matrix, as shown. Here, 

and 

DJlx = uJxl 
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where the t and x of course refer to partial differentiation. 

WI = 

3, (x,t) 

3.2 h,t) 

53kt) 

ui (x,t) 

ue(x,t) 

q&t) 

vicx,tl 

ve(x,t) 

v&t) 

wi (x,t) 

we&t) 

w*(x,t) 

El (x,t) 

E2 (x,t) 

E 3 (x, t.> 

B2 (x, t> 

B3 (x,t> 
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[Bl = 

- 

0 

0 

0 

e/mi(E1 + vIB3 - wiB2) + VieCUe.- ui) + 'in(un - 

-e/me(El + v,B3 - weB2) + Vei(ui - ue> + Ven(un - 

Vni(Ui - UJ + vne 'u, - "*' 

e/mi(E2 + Blw. - u.B ) + v 1 13 ie(ve - vi)+v. (v - In n 

-e/me(E2 + Blwe - ueB3) + Vei(Vi - Ve> + Ven(vn - 

Vni(Vi - VJ + Vne(Ve - V*) 

e/mi(E, + uiB2 - viB1) + V. (We - Wi> + 'in(W~ - le 

-e/me(E3 + ueB2 - veBl) + Vei(Wi - We> + Ven(Wn - 

Vni(Wi - WJ + v,,'", - "J 

c2poe(uee51 - uie'2) 

c2poe (vee52 - vie311 

c2uoe (wee 52 - w.e'l) 1 

0 

0 
- 

Similarly, the lineariied system of equations (1.18 - 1.34) could 

also be written as a single matrix equation. A system of equations 

such as equation (1.35) is hyperbolic if the coefficient matrix [A] 

contains only real eigenvalues and is diagonalizable'; i.e., if one 

can find a matrix [T] such that 

[Tl-1 iA1 [Tl =‘ [Dl s 
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where [D] is a real diagonal matrix. Such a [T] can be found if the 

eigenvectors of [A] are linearly independent. Setting det[A - )tT] = 0, 

and solving for the roots of the resulting polynomial, the eigenvalues 

of [A] are found to be 

x1 = -c 

x2 = -c 

x3 =u -a e e 

x4 =u -a. i 1 

X5 =un-an 

‘6 = ui + ai 

x7 = un + an 

xg =ui 

x9 = u. 
1 

x i0 =u e 

x 11 =u e 

x 12 =u n 

x 13 ‘U n 

x 14 = ui + ue 

x15 = ue + ae 

Al6 = c 

x 17 = c 

and the corresponding eigenvectors, as obtained from 

[A - ‘i’l [‘il = [‘I 

where [Xi] is an eigenvector corresponding to the eigenvalue X i' are 

given on the following page. 
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Xl = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 'C, 0, 0, 1) 

y2 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,s ,o, 0, 0, 0, c, 1, 0) 

x3 = (0, - t, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; 0) 

?r, = (- &, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

x5 = (0, 0, - 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

E6 = &, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

x7 = (0, 0, &, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

x8 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

E9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) 

IlO = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

x11 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) 

El, = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 050) 

%I3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) 

‘illI+ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0) 

?I15 = (0, &-, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

& = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, c, 0, 0, 1) 

Ki7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -c, 1, 0) 

Forming a matrix whose columns (or rows) are composed of these eigen- 

vectors and then evaluating the determinant of that matrix, one finds 

its value is not zero; thus, the eigenvectors above are linearly in- 

dependent. Therefore, since the eigenvalues of [A] are real and the 

corresponding eigenvectors are linearly independent, the matrix [A] 

can be diagonalized to yield a real diagonal matrix, and thus the 

system of equations, represented by equation (1.35), is hyperbolic. 

3. The Mathematical Problem 

It has been stated that the physical problem involved in this 
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study is to impose some disturbance upon a plasma initially in equi- 

librium and then determine the effect at later times and spatial 

positions. Thus, a mixed initial-boundary value problem is being 

considered where values of variables at t = 0 are known over some 

range of x and values of some variables are known at x = 0 as a function 

of time. As discussed in Ref. 7, the number of dependent variables 

which may be assigned values on the boundary x = 0 is not arbitrary. 

This is discussed in more detail in the next chapter after the equations 

have been cast in a diagonal form. In summary, the mathematical pro- 

blem is to find a solution of 

’ [u,] + [Al [uxl = [Bl 
given the initial values [U(x,o)] and some of the boundary values 

The existence and uniqueness of a solution is discussed in a 

later section. In this discussion and in discussions about the solu- 

tion technique the nonlinear system will be considered; however, the 

same discussion could be applied to the linearized equations. 



196 

SECTION II 

The first part of this section is concerned with the transfor- 

mation of the matrix [A] into diagonal form. Next the boundary condi- 

tions; i.e., the imposed disturbance, are discussed in general and 

then, along with the initial values, for a particular example model; 

In the concluding section the conditions which must be met in order 

for a unique solution to exist are considered. 

1. Tranformation of the System into a Diagonal Form 

It is advantageousto transform [A] into diagonal form for several 

reasons. First the existence theorem lo (d' iscussed in the last section 

of this chapter) applies to such a diagonal system. In addition, a 

diagonal form is needed in order to determine what variables, or 

relations such that these variables can be calculated, can be speci- 

fied on the x = 0 boundary as a function of time. 

Previously when the system was classified as being hyperbolic it 

was stated that one could find a matrix [T] such that 

[Tl-?Al [Tl = [Dl (2.1) 

where [D] is a real diagonal matrix. The determination of the trans- 

formation matrix [T] proceeds as follows: In Section I the eigenvalues 

and corresponding eigenvectors of [A] were listed. The first step in 

the formation of [T] is to find the corresponding set of unit orthogonal 

eigenvectors; i.e., the set such that 

?iiT ‘il. = 
J (. 1, if i = j 

0, if i # j (2.2) 
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Since it has been shown that the eigenvectors of [A] are linearly 

independent, the. Gram-Schmidt orthogonalization procedure 12 can be 

used to find a set of unit orthogonal eigenvectors. In Appendix A 

such a procedure is illustrated. Once these are found, [T], which is 

shown on the following page, with 

D3=J+ sD4=& , 
is formed by letting its columns be composed of these unit orthogonal 

eigenvectors. This method of forming [T] creates an orthogonal matrix; 

i.e., 

IT]-1 = [TIT (2.3) 

which proves to be useful later. In addition, with [T] formed in the 

manner explained, [D] is a diagonal matrix containing the eigenvalues 

of [A] as its diagonal elements. A discussion of such a similarity 

transformation can be found in any book on matrices. With the [T] 

matrix having been formed, the discussion of the transformation of 

equation (1.35) into a diagonal form can be continued. 

First make the transformation 

WI = PI PI 
in equation (1.35), which yields 

[Tl t [VI + ITI [VI t + [Al ( [Tl ,[Vl + [Tl [VI x) = LB] 

or 

(2.4) 

ITI [VI t + [Al [Tl [VI, = [Bl - ITI t [VI - [Al [Tlx[Vl . 
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Pre-multiplying the preceding equation by CT]-1 one obtains 

[VI, + ITI-1 [Al ITI [VI, = [Tl-1 [Bl - [Tl-1 [Tl$Vl 

- [Tl-l[Al [Tl,[Vl . 

Then making use of equation (2.1) yields 

[VI t .+ [Dl [Vlx = [Cl (2.5) 

where 

t-cl = [Tl-l[Bl - [Tl-l[Tlt[Vl - [Tl-l[Al [Tlx[Vl . 

Equation (2.5) is the desired diagonal form of equation (1.35), 

except that [C] contains derivatives. However, from an inspection of 

[T] it is seen that 

[Tlx = [Tit = [O] . (2.6) 

Therefore, using this along with the fact that [T] is an orthogonal 

matrix yields 

Ccl = [TIT@1 l (2.7) 

Thus, instead of having to find [T]'l in order to obtain [C] one merely 

has to take the transpose of [T]. If the basic equations had not been 

written in terms of the natural log of the number densities, which 

could only be done by assuming that each species was isothermal, then 

equation (2.6) would not be true. Therefore, the expression for [C] 

would have contained derivatives, which would have resulted in a severe 

complication. 

In conclusion, the original system of equations given by equation 

(1.35) has been changed into the diagonal system below 

[VI t + [Dl [Vlx = [Cl (2 l 8) 

with, in general, 
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[Dl = Dl (x,t,[Vl> and [Cl = [c] (x,t, [v]) 

where 

and 
I31 = ITIT [Ul 

[cl = [TITIBl . 
[V], [C], and [D] are shown in the following along with [U] in terms of 

l-VI . 

[VI = 

%. v1 (x,t> 
v, (x,t> 
v3 (x,t> 
vq (x,t> 
v5 (x,t> 
yj (x,t> 
v7 (x,t> 
vg h,t) 
vg (x,t> 
Vlfj (x,t> 
v11 (x,t> 
v,, (x,t> 
vl&t) 
v14 (x,t) 
v15 (x,t> 
VI6 (x,t> 
V17(x,t) 

- - 

= 

D&B3 - E2> 

D4(E3 + cB2) 

D2 (Ue - aec2) 

D1 hi - ai 

D3(“n - anG3) 

Dl(S1 + aiui) 

D3(c3 + anun> 

V. 1 
W. 1 
V e 
W e 
V n 
W n 
E1 

D2(S2 + aeue) 

D&E2 + B3> 

% @2 - q) 

- 

[C] is a column matrix with the following as its elements. 

Cl =- D,+c2poe(VIOexp[D2(V15 - a,Vs)] - VgexPID1(Vg - aiVQ)]' 

C2 = D,+c2poe{V11exP[D2(V15 - aeV3) 1 - v,exp[D1(Vs - aiV,)l} 

C3 = D2{- ~ [V14 + V~OD~(CV~ + V,,6> - V11D4(cV2 ' ‘17>I .Js ‘ei 
e 

[D1 (I%+ + a&) - D2(V3 + aeV,5)] + ven[D3(V5 + anV7) 

- D2N3 + aeV15>11 
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C4 = D& [vl,+ + V8D4W1 + VI 5) - V9D4(cV2 + V17)1 + vieID 
i 

(v3 + aeV15) - D1(V4 + afV,>l + vin[D3(V5 + anv7) - D1 

(V4 + aiV6) 11 

c5 = D3(vni[D1(V4 + aiV6) - D3(V5 + a,V,)] + une[D2CV3 + aeV15) 

- D3(V5 f a,V,>l) 

‘6 = aic4 

C7 =aC n5 

‘8 = $ [D,+(Cv16 - vl> + Blvg - D1D4(v4 + aiv6>(cv1 + v16>] 

+ 'iecV1O - 54 + v&5 - vf.3) 

C9 = " [D4(V2 - cV17 > 
i 

+ D1D4(v4 + aiV6)(cV2 + v17> - ‘IV81 

+ VieCVll - vg> + Vin(VL3 - vg) 

50 = - r [D4(Cv16 - vl> + Blvll - D2D4(V3 + aeV15)(cv1 + ‘& 
e 

+ ve& - VlO> + ven(v12 - VlO) 

Cl1 = - 5 D4(V2 - cV17 ) + D2D4(V3 + aeV15)(cV2 -I- V,,) - BIVIO 
e 

+ ‘eacV9 - Vll>‘ + &(Vl3 - Vll) 

‘12 = ‘ni (‘8 - VI21 + ~,,(VlO - VIZ) 

‘13 = vni(V9 - VI31 + vne(vll - VI31 

Cl4 = c2poe{D2(V3 f aeV15) eXp[D& - aiV4 

exp[D2(V15 - aeV3)l 1 

.)I - D1(V,+ + aiV6 ,) 
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'15 e 3 -aC 

‘16 
- -cc 1 

c17 = -cc, 

The diagonal matrix [D], written in terms of the elements of [U] is 

[Dl = 

- 

-C 

-C 

u -a e e 

Ui-ai 

u,-a n 

u +a ii 

'n+"n 

U’. 
1 

U. 
1 

U 
e 

U 

0 

e 

U n 

U n 

Ui+Ue 

ue+a e 

C 

C 

and 
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WI = 

Cl (x,t> 
5, (x,t) 
5&u) 
u+bt) 
u,(x.t) 
u&t) 
vi (x,t> 
v,(x,t) 
v&t) 
wi(x,t) 
w,(x,t) 
wJx,t) 
El (x,t) 
E2 (x,t> 
E3 (x,t> 
B2 (x,t> 
B3 (x,t) 

- 

D1(V6 - aiV4) 

D2(V15 - aeV3) 

D3 cv7 - “,v5) 

D1(V4 + aiV6) 

D2(V3 + aeV15> 

D3(V5 + anV7> 

‘8 

%o. 

%2 

V9 

91 

%3 

V14 

D4kV16 - VI) 

D4@2 - CVl7) 

D4(cV2 + Vl7> 

D4(cV1 + v& 

2. General Discussion of Boundary Conditions 

Previously it was discussed how the physical problem of imposing 

a disturbance upon the flow becomes the mathematical problem of finding 

a solution of the governing equations given the initial values of the 

dependent variables and the values of some variables on the x = 0 

boundary, which represents the disturbance. Of course, instead of 

equation (1.35), the problem now is to find a solution of the diagonal 

system (2.8) and then return to the original system through the trans- 

formation [U] = [T][V]; In connection with the boundary conditions 

it has also been discussed how the number of variables speci.fied, or 

the number of relations such that these variables may be calculated, 

:Ls not arbitrary. 
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The eigenvalues of [A] (also of [D]) are called characteristics 

and may be shown to be equal to dx/dt; thus, they may be sketched 

as curves on the x-t plane. Let M1 be the number of positive eigen- 

values of [A]. Therefore, there will be M1 characteristic curves, 

corresponding to the positive eigenvalues of [A], which lie to the right 

of the origin of the x-t plane as shown below. 

When the system was transformed into diagonal form the [T] matrix 

was arranged so that these M1 characteristics are the last M1 eigen- 

values of [D]. Therefore, the following conditions must be imposed 

on [V] along the x = 0 boundary': 

(1) the values of V17-(Mil),***, VI7 are prescribed 

along the x = 0 boundary as functions of time, or 

(2) more generally, M1 relations among V1,V2,***,V17 are 

given along x = 0 with the stipulation that it is 

possible to compute V17-(M&),.*.,V17 from these 

relations. 

3. Formulation of the Example Problem 

From an inspection of the eigenvalues, or characteristics, as 

given on page 18, it is seen that if u., u i e' and u are considered to n 
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be negative at the origin, with 11.1~1 > ai, lunl > an and luel < ae, 

then only the last three characteristics lie to the right. Thus, for 

this particular case, one must specify V15, V16, and V17, or three 

relations such that they can be calculated, on the x = 0 boundary as 

functions of time. If these particular restrictions are not forced 

upon u i , ue, and u n, then one must specify more variables, depending 

upon the new restrictions. 

Now if, on the x - 0 boundary, the assumption is made that 

Ni(O,t) = Ne(O,t) 

then one can show, from the expressions for the U's in terms of the 

V's given on page 27, that 

vl&u) W,(O,t) - aiV4(0,t)l + aeV3(0,t> 

where V,(O,t), V,(O,t) and V3(0,t) will have been calculated in the 

solution technique by the time V15(0,t) is calculated. In addition, 

the assumption is made that the imposed disturbance is that of 

forcing the electric and magnetic fields in the y-direction to be 

certain functions of time at x = 0; i.e., 

E,(O,t) = g#> 

B2(0,t> = g,(t) 

where, as will be seen later, g1 and g, must satisfy certain condi- 

tions in order for one to be assured of a unique solution existing. 

With the above, it can be shown from the expressions on page 203 that 

V16(0,Q = $,I+ 4 g1(t) + v,(o,t>) 

and 

v17Kw = L g,(t) 

U4 
- cV2uLt) 
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where, as on bottom of previous page, Vl(O,t) and V,(O,t) will have 

been calculated before V16(0,t) and V17(0,t). Instead of E, and B2 

one could have forced E3 and B3 or E2 and E3 or B2 and B3 at x = 0 

and still have been able to solve for V,,(O,t) and V,,(O,t). 

Initially it is required that the plasma flow be in equilibrium. 

Thus, remembering to satisfy the restrictions previously placed upon 

up ues and un plus' using number densities that might exist in an 

ionized gas at atmospheric pressure, the particular initial values 

assumed are 

[u] (x,0) = 

Cl (x,0) 
5, (x,0) 
s3b,O> 

ui (x,0) 

u,(x,O) 

uJx,O) 

vi (x,0) 

ve (x,0) 

vnW) 

wi (x,0) 

we (x,0) 

w,(x.O) 

El (x,0) 

E2 (x,0) 

E3 (x,0) 
B2 (x,0) 
B3 (x,Q) 

ln(1021) 

ln(1021) 

ln(3.62 x 1024) 

-1500 m/set 

-1500 m/set 

-1500 m/set 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

In order to find the corresponding initial values of the diagonal 

system, the transformation 

[VI (x,0) = hl-1 [u] (x,0) 
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:Ls used to yield 

PI (x,‘O) = 

v1 (x,07 
v2 (x,0) 
v3 (x,0) 
vl+ (x,0) 
v5 (x,.0) 
v6 (x,0) 
v7 (x,0) 
v8 (x,0) 
vg (x,0) 
v10 (x,0) 
v11 (x,0) 
v,, (x,0) 

V~3(X,W 

V,,(x,O) 

VI5 (x,0) 

v16 (x,0) 
V,,(x,O) 

P 

J i 

0 

0 
D,{-1500 - a 1n(1021)3 

D+1500 - i aeln(1021)} 
D+1500 - a ln(3.62 n x 1024)] 

D,cln(1021) - 1500 a 1 i 
D311n(3.62 x 1024) - 1500 a J 

n 
0 

{ln(1021) - 1500 a e 
0 

D2 

- 
0 

The temperature of each gas is taken to be Te = lO,OOOoK, and T = i 

Tn = 20000K which yields thermal velocities of ae = 3.9 x lo5 m/set, 

ai = 640 m/set, and a = 640 m/set. 
n Thus the -1500 m/set assumed for 

the initial value of ui, ue, and u n satisfies the restrictions dis- 

.cussed previously. 

Values for the collision frequencies encountered in the species 

momentum equations are also needed. The effective frequencies can be 

calculated, aa discussed in Section I to yield the values below. 

These calculations require values for the average collision frequencies 

which are obtained in Appendix B. 

"ie = 3.73 x 105/sec, vin = 2.95 x 108/sec 
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V = 2 76 x 10l"/sec v ei l 

, en = 1.44 x lOll/sec 

‘V ni = 0.81 x 105/sec, vne = 5.36 x 102/sec 

In conclusion , particular initial values and boundary conditions 

(the imposed disturbance), plus values for the collision frequencies 

have been obtained, for which a solution of equation (2.8) is required. 

In addition, the linearized system of equations is also diagonalized 

and solved using the same values listed above. 

4. Compatibilitystence Theorem 

In this section the concept of a domain of dependence is 

discussed. 

All points within the region bounded by the maximum characteristics 

(max ldx/dtl = c) drawn from the end points of the initial interval 

+O; i.e., O,, are dependent upon only the initial values of the 

variables. For example, values at P1 are only dependent upon that 
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portion of the initial interval intersected by the maximum positive 

and negative characteristics drapm backward through PI0 This inter- 

sected portion of qo is called the domain of dependence of I',,. All 

points of 0, are dependent upon a portion of the initial interval as 

well as some of the x = 0 boundary. For example, values at P2 are 

dependent upon that portion of the initial interval from x = 0 to 

where the maximum negative characteristic, drawn backwards through 

I?29 intersects it as well as that portion of the boundary up to where 

the maximum positive characteristic intersects the t-axis. Thus, 

if a solution exists it can only be within O(0 =01U02)since points 

outside this domain would depend upon initial values which are not 

given. Therefore, if the initial interval is $' it makes no sense 

to specify boundary conditions for times exceeding to, where to = 
X 

0 -. 
C 

Equation (2.8) may be written as 

WI t - [D1l [VI, = [Cl; CD11 = +‘I 
with 

[VI = [f"] on 9'; [f'] = [f"](x) 

and 

[V-l = [f-l on 9-g El = w-1 (t, [v+l> 

(2.9) 

(2.10) 

where 

hl = ; [II:] > 0 and [Di] < 0 

and [V+] and [V-] correspond to the partitioning of [D ] shovm above. 

lcl” and $- are as shown on the previous figure. 

Assuming that the closed sets 

s-l = {(x,t, [VI) lo 5 x 5 x0, 0 5 t s 61, 1 [VI - [fOl I s EI 

and 
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$2’ = Ict,[v*l>J 0 1 t s 61, I[v+] - [fo+](o)( s E) 

* 10 
exist, the following existence theorem taken from Thomee can be . 

stated. 

Existence Theorem: If [f"]e62 on $', [C]E~~ on 51, [DI]eS2 on 52, 

and [f-]Ec2 on.G!- , plus if certain compatibility conditions are 

satisfied, then there exists a 6 > O(6 < 6,) such that a solution 

ES1 exists in- 616, where e6 = OnlO % t 5 6). In addition, the . 

solution is unique. 

The compatibility conditions which must be satisfied in the 

hypothesis of the existence theorem are: 

(1) [f-](O,[f"+l(0) ) = [f"-l(o) 

(2) q (0, [f”+l (0) 1 + z (O,[f0+1(0) ){[&](O,O,[f"](0) ) 

o+ . 
w (0) + [C+l@,O,[f"](0) >I = '[D;].(O,O,[f"](0) ) e (0) 

+ [c-l (O,O, If”3 (0) > 

where aTf'3 is the matrix with columns a[f-1 

a [v+l . avl 

, K = 1,2,***,14. 

Condition (1) expresses the continuity of [V] at the origin; 

whereas, condition (2) essentially expresses the fact that the 

differential equation applies at the origin. It is obtained in the 

following manner. With the partitioning of [Dl], [V] and [C] pre- 
-# 

viously illustrated, equation (2.8) may be partitioned as below. 

and 

rv+1, - [$I IV+], = [C+l (2.11) 

w-1, - [D-;] [V-l, = [C-l (2.12) 

Plow using equation (2,9) it can be seen that applying the equation for 
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[VW] above at the origin yields 

* (0,O) = [D;](O,O,[f'](O) ) q (0) + [c-lwb[f”lm > 
(2.13) 

However, equation (2.10) states that [V-] is specified on the x = 0 

boundary as a function of time and [V+]. Therefore the time derivative 

of the matrix of specified functions must be the same as the time 

derivative above. Therefore, 

q (0,O) = F (0,O) = q (0, [f”+](o) > 

+ a_Tf'l (o,[fo+](o) > @ 
a Iv+1 

(O,O) (2.14) 

but, 
+ 

= [Df](O,O,[f"](0) ) d[;l I (0) 

+ rc+l(o ,o, [fOl (0) 1 l (2.15) 

Substituting this into equation (2.14) and then the resulting expression 

into equation (2.13) yields the second compatibility condition. 

From the previous discussion of the boundary conditions for the 

example problem 

+ 
[f-l(t,[fO ]> = 

whereas, 

2 (v6(x,o) - aiV4(X,O)3 f aeV3(x 

- cv2(x,0) - . 
[fO-](x) = 

V15kO) 

[ 1 v1&0) l 

v17 (x,0) 

(2.16) 

(2.17) 

: 
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From the assumed initial values given on page 207 it is seen that 

Vl(x,O) = Vz(x,O) = V16(x,O) = V17(x,O) = 0; thus, using this and 

applying condition (1) yields 

- aiV4(0,0>3 -f- a,V,(O,O> 

= 

v15 @,a> 

0 

0’ 

. 

Making use of the relations between the V's and U's on page 203 it 

is seen that 

Ni(O,O) = Ne(O,O) 

which is satisfied. Also from the above 

81(O) = 0 and g2(0) = 0 . 

Now, before applying the second condition observe that 

p (t,[fO+]) = 

+ 

0 

1; da --- 
c D4 dt . 

1 dg2 -- 
.D4 dt _ 

Also, since [f" ] consists of the first 14 elements of [V](x,O) and 

[f" ] the last three 

(2.18) 

0+ 

9 = [0] and q = [O] . 

In addition, from an inspection of the elements of [C] given on 

page 200 

rc+l@ ,o, If”1 (0) 1 = WI 
and 

cl (O,O,[fO1(0) ) = [o] . 
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Thus, applying the second compatibility condition yields 

Therefore, at t = 0 

0 

11 dgl -- - (0) c D4 dt 
\ 

= 

% ,-I 
dt=” 

dg2 
dt= 0 

- - 
0 

1” 

0 
- - 

. 

(2.19) 

. (2.20) 

Previously it was stated that gl(t) and g,(t) must satisfy certain 

conditions. These are given by (2.18), (2.19) and (2.20). The parti- 

cular forms of gI and g, chosen are 

g, (t) = go2(1 - cos 27rwt) (2.21) 

82 (t) = go2(1 - cos 2lTut) (2.22) 

which, as can easily be seen, satisfy the restrictions listed above. 

Thus the boundary conditions for the example, in terms of the trans- 

formed variables, are 

J - aiV4(0,t)l + aeV3(0,t) 

- cos 2lTwt) + v,(o,t)} 

In conclusion, with the above forms for g,(t) and g,(t); i.e., 

the imposed disturbance, one is assured of satisfying the compatibility 

conditions. Thus, it is known from the existence theorem that a 
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solution of equation (2.8) subject to the particular initial-values 

and boundary conditions assumed does exist in 06. Once this solution 

5s found it is a simple matter to return to the original system. 
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In this section the finite-difference 

difference equations from the differential 

SECTION III 

Once the difference equations are obtained 

and convergence are analyzed. 

scheme used to form the 

equations is developed. 

the consistency, stability, 

1. Development of the Finite-Difference Scheme and the Difference 
Equations 

When using finite-differences to find a numerical solution, 

values of the unknown variables are obtained at a discrete set of 

points called net points. A rectangular net of lines, to be super- 

imposed on the (x,t) plane such that one family of lines is parallel 

to the x-axis and the other family of lines is parallel to the t-axis, 

are chosen. The lines are assumed equi-spaced with x interval Ax and 

t interval At, as illustrated below, where Ax and At are not necessarily 

equal. 

t+At 

x x+Ax 
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If the function W(x,t) is defined only at the net points (kAx,LAt) 

in the (x,t) plane, for k,L integers, then the values of W(x,t> at 

the points Pi of the previous figure are: 

PO: w(x, t> 

P1: W(x - Ax,t) 

P2: W(x,t + At) 

P3: W(x + Ax,t) 

The Forward and backward space difference quotients at PO are written 

b [W(x + Ax,t) - W(x,t)] 

and 

& [W(x,t> - W(x - Ax,t)] 

respectively, and both approximate the partial derivative aV/ax of 

the differentiable function V(x,t) whose values coincide with those 

of W(x,t) at each net point. Similarly, the forward time difference 

quotient at PO is written 

wt = 5 [W(x,t + At) - W(x,t)] 

and approximates the partial derivative aV/at. 

Previously the domain of dependence concept was discussed; i.e., 

values at Q', of the following figure, depend upon that portion of the 

previous time step intersected by the maximum positive and negative 

characteristics drawn backwards through Q'. The time and spatial 

steps are selected such that the tangents to the characteristics at 

Q', when traced backwards, intersect the line through P and R at 

the points Si; i = 1,2, 9.•,17, between P and R. 
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t+At 

t 

- 

P - 

Q' 

R 

X x-l-Ax 

This assures one of keeping the domain of dependence intact and thus 

the finite-difference domain lies within the analytic domain. It is 

seen that the condition for the above to be satisfied is 

dx(i) (i) where dr = A . 

A typical equation of the diagonalized system given by equation 

(2.8) is 

,(i> + ,(i)~W = ,(i); i 
t X 

= 1,2,*.*,17 

However, (Vii) + ,(i)Vii)) can be considered to be a total time 

derivative along the curve x (i) (i) = x(t) for which dx ci)/dt = +I; 

thus, equation (3.1) can be written as 

along 

dV(i) r=C (0 

x(i) (0 dx(i) = x(t), where - = X dt 
co . 

(3.1) 

(3.2) 
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Values of V(i) at Q' 
.(i) 

are written as V(Q') and the discrete valued 
(i) 

approximation is W(Q'). 'From the'previous figure, 

where i is a unit vector in the x-direction and 5 is a unit vector 

along the t-axis. It is easily seen that 

tan El(i) = 2 = A& = -b 
i 

X 

thus, setting Si = 1 and S. = x (9 
t 1X 

one obtains 

F$ = h q + jA 

and 

Now, the derivative of V (i> in the direction of gi is 

ii . &) = 

or 

Now, let the finite-difference approximation to this directional 

derivative be . 

. Vvii) ; "$' 
(i) 

'i 
- W(Si) 

Q'S, 
. 

However, from the previous figure it is seen that 

(3.3) 

(3.4) 

(3.5) 

-7 = sfn *(iI yyyp- QQ i 
where 
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therefore, 

si9” = J 1+ x(i)2 QQ' . 

Thus, equation (3.5) can be written as 
(0 (0 

iii l p&) z 

J+ 

W(Q,' > - W(Si) 

w2 w 

and thus, from equation (3.4) 

<q (i) 
dv(i) W(Q'> - wcy 
YE----' QQ' . (3.6) 

Then, from equation (3.2) one obtains 

K? (0 
W(Q’) - wq (0 

2 C(Q’) . (3.7) 
Q9' 

The points Si will not coincide with the net points (P,R) and thus 

,(i> (Si) is undefined since W (9 is defined only at net points. This 
(9 

problem is solved by approximating W(Si) by linear interpolation between 

the values of W (0 at the adjacent net points. Clearly, if the gradient 

of "iQ' is positive, Si will lie between P and Q; whereas, if the grad- 

ient is negative, Si will lie between Q and R. 

If one.assumes that Si lies between P and Q, then using linear 

interpolation yields 

(0 
W(SI) 

(0 SiQ 
= W(P) - 

(i) sip 

PQ 
+ W(Q) - 

PQ 
(3.8) 

but, 
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Therefak-e, 

(i) (1) ‘SiQ 
W(Si) = W(P) - 

(i) Pq - v 

PQ 
+ W(Q) 

PQ 

Again considering the previous figure, one finds 

tan Bci) At 
=-$y=, , 

i 

or 

Also 

therefore, 

. 
- = AtAti’ . SiQ 

w=Ax ; 

SiQ At (0 
-=z X(Q') . 
PQ 

(3.9) 

Substituting the above in equation (3.9) and then using the resulting 
(0 

expression for W(Si) in equation (3.7) yields 

W (i> (i> 
W(Q' > - w(Q) + A(Q'> 

(i) W(Q) - W(p) (i) 
At Ax = i?(Q') 

(9 W (i> 
where A(Q'> and e(Q'> involve W(Q'), which of course is not known. 

(9 (0 
Therefore, one approximates A(Q') and e<Q') by their values at Q; 

i.e., the previous time step. One now concludes that if A (0 is positive 

the difference equations are 

(0 (i> 
W(x,t + At) - W(x,t) + A;ix)t) 

(i> (i> 
W(x,t) - W(x - Ax,t) (3 

At , Ax = ti(x,t) 

(3.10) 

whereas, if A (i> is negative the difference equations are obtained 

similarly as 

(i> W 
W(x,t + At) - W(x,t) + A& 

(i> (3 . 

At , 
W(x + Ax,t) - W(x,t) = &, 

Ax 'c- j.ii) 
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Thus, from the preceding equations one sees that for characteristics 

with a positive gradient, the spatial derivatives in the corresponding 

equations are determined by backward finite-difference quotients; 

whereas, for characteristics with a negative gradient, spatial deriv- 

atives are determined by forward finite-difference quotients. 

In concluding this section, it should be noted that from an 

inspection of equation (3.101, it is seen that when applying the 
(0 

equation at x = 0, W(-Ax,t) is required, which of course is not known. 

However, as has been previously stated, those variables associated 

with positive characteristics must be specified at x = 0 as a function 

of time. Thus, equation (3.10) is not applied at x = 0. Keeping this 

in mind, from the preceding difference equations, W(x,t + At) can be 

found in terms of quantifxes-calculated at the previous time step. 

2. Consistency 

When approximating the solution of differential equations by the 

solution of difference equations there are three primary considerations: 

consistency, stability, and convergence. In this section the consis- 

tency of the difference equations is analyzed, while the stability and 

convergence are considered in the following sections. 

As previously stated, one can write the equations of the diagonal 

system as 

av(i) + ,(i) a&) (0 
at ax= c ; i = 1,***',17 . (3.12) 

The difference equations corresponding to the differential equations 

above can be obtained, as illustrated in the previous section, by 

replacing the time derivative by a forward finite-difference quotient 

and the spatial derivative by a backward finite-difference quotieut, 
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assuming ,(i) is positive. Now, at the net point (kAx,lAt) one can 

write 

av (3 
(iI 

(- )k,e = 
'k,l+l 

(0 

at At 
- 'k,t + ,(i) 

1 

and 

av(i) 
(- 'k,a. - 'k-1,t 

ax )k,e = Ax + Tii) 

(3.13) 

(3.14) 

Therefore, substituting these expressions into equation (3.12) yields 

(0 
'k,l+l 

(0 
- 'k,a. 

,(i) - 
l 

At 
+ ,(i) k,& - 'l%,,& 

Ax 
+ Tii) + A(i)T(ji) -i C(i) 

(3.15) 

Thus, if the truncation error 

.(i) = Tl(i) + x(i)T2(i) 

approaches zero as At + 0 and Ax -f 0, the difference equations, obtained 

in the manner previously discussed, are said to be consistent. 

Using Taylor's series with a remainder one can write 

(i> 0.1 avti) 
a2vti) 

vk-l,L = Vk,e - AX(ax (Ax) 2 
)k$ + 2 

(x' $1 

ax2 
(3.16) 

where x' is some x between k and k-l. Similarly, 

W adi) (i) + At‘atF iAt> 2 
a2v(i) 

'k&+1 = 'k,l )k,e + 2 
(k,t') (3.17) 

at2 

where t' is some t between &+l and 1. Now, using the above along with 

equations (3.13) and (3.14) it can be seen that 

(i) = - F 

a2v(i) 

5 
(k,t') 

at2 

and 

+) - Ax 
a2vti) 

(x’ ,a 
2 

ax2 

---..--- -. . . . 
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Therefore, the total truncation error is 

(f.) = _ At 
32p) 

(k,t') + ,(i) 5 
a2vCi) 

T 
2 at2 

(x' $3 
ax2 

which is O(At,Ax) and thus approaches zero as At and Ax + 0. Thus, 

the difference equations obtained by replacing the time derivative 

by forward differences and the spatial derivative by backward (or 

forward) differences are consistent with the differential equations. 

3. Stability 

In order to perform a stability analysis a typical difference 

equation is treated as being linear and the stability of that one 

equation is considered. By considering the worst possible'case this 

then gives some indication of the stability of the nonlinear system. 

A typical difference equation, using forward differences for the 

spatial derivative, is 

fk,l+l = fk,l - +~,a. Ax a (fk+l L - fk L) - bAtfk L 
, , , 

+ Atgk,&; k = O,l,*m*,(K-1) (3.18) 

whereas, if backward differences are used to replace the spatial 

derivatives, then 

fk,&+l = fk,J? -. 'k,L 2 (fk,e - fk-l,$ - bAtfk,; 

+ Atgk L; k = 1,2,*s=,(K-L) 
, (3.19) 

where K is the number of x-net points at 1 = 0, b consists of collision 

frequencies and g of course is merely an element of [C] without the 

-(bfk,L)'term. In the stability analysis, instead of hk L one uses either 
, 

the maximum or minimum value of Al,l, depending on which yields the 
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most severe restriction on the step sizes, in the preceding equation. 

Now, at a'particular time step fk e takes on a value at each 
, 

x-net point; thus, one can write all the values of f 
k,x 

at a particular 

time step as a column matrix. Therefore, equation (3.18), as well as 

equation (3.19), may be written in the following form: 

IF] <1+1> = [M][F](L) + [G](l) . (3.20) 

Then the requirement for stability is that the eigenvalue of [M] having 

maximum absolute value must be less than 1. 

It can be seen that the [M] associated with equation (3.18), 

where Ak L has been replaced by -c, has the form 
, 

mij 
= (1 - c e - bAt)(dij - Q) + c E 6i+l j 

, 

where 5 = K-1+1 and c is the speed of light. Therefore, it is seen 

that f(K-~+l),~+l has been taken to be zero although actually it cannot 

be calculated. Similarly the [M] associated with equation (3.19), 

where Ak L has been replaced by c, has the form 
, 

m. 
=j 

= (1 - c E - bAt)(Lj - &l) + c K 6 Ax i-1,j ' 

Here the fact that fo,L+l is specified instead of calculated is taken 

into account. It is easily seen in both cases that [M] is a triangular 

matrix and thus its eigenvalues are merely its diagonal elements. In 

addition, the eigenvalues of both cases are the same; namely, 0 and 

(1 - c e - bAt). Therefore, for the difference equations to be stable 

11 - c g - bAtl < 1 

or 

0 < (bAt + E c)<2 . 
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?herefore, 

At< 2 
C 

(3.21) 

b+hx 

must be satisfied for the difference equations to be stable.- If one 

looks back at the governing equations, it is seen that the largest 

possible value for b is 
n 

aL 
b e 3 (V 

1 + a: ei + 'en) ' 
. 

thus, 

At< a2 2 . (3.22) 
e 

(v 
1 + ai ei + "en) + k 

In conclusion, it should be remembered that equation (3.22) was 

not derived for the non-linear system, but it does provide some guide. 

4. Convergence 

When the difference between the finite difference solution and 

the actual solution of the differential equations approaches zero as a 

XI&L as the time step decreases, convergence is said to be satisfied. 

First define the error associated with each variable at the net point 

(kAx,lAt) as 
(i> 

'k,l 
0.) 

= wi,t. 
(i> - Vk,L; i = 1,2,*.*,17 . 

Substituting this into equation (3.10) and rearranging yields 

(0 
Wk,l+l 

0.) (i> 
"k,??k-l,L 

(0 
'k-&e 

- (3 + AtCk,e, i = 1,2,.**,17 
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Thus, letting EL = max Iu$:;~ be a measure of the error, using the 

At 0-j U,k) 
fact that G %, 

0.) < 1 in a region where ]W, e,- f" 
(0 

9 
I< K1, and using 

the continuity of the solution, as given by the existence theorem, 

yields 

*.t+1 I 2Ee + BIAtE1 + B,At 

for l? 0, E 0 = 0 and where B, and B, are positive constants. The 

measure of the error from this inequality can always be made to satisfy 

that given in Ref. 9, for which it is shown that the measure does 

indeed approach zero as At -+ 0. In addition, Courant, et al. 9 illustrates 

(i> that there is a region contained within Q6 in which Iw, L - f" (0 1 < K 
, 1' 

Thus, one concludes that the finite difference solution converges to the 

solution of the differential equations as the time step approaches zero. 
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SECTION IV 

When solving difference equations, using particular initial and 

boundary values, problems with stability which are not predicted in a 

linearized analysis such as in Section III may appear. In this sec- 

tion the investigation of the actual stability by computer experimen- 

tation is discussed and then a stable solution for the example problem 

is presented. The computer programs are listed in Appendix C. 

1. Analysis of Computer Experimentation for the Example Problem 

With the initial conditions previously assumed; i.e., 

lx1 (x,0) = 

- - 
51 (x,0) 

52 (x,0) 
53 (x,0) 

ui (x,0) 

u,w> 

un (x,0) 

vi(x,o) 

v,(x.O) 

v,(Q) 

wi (x,0) 

w,(x.O) 

w$x,O) 

El (x,0) 

E2 (x,0) 

E3 (x,0) 

B:! (x,0) 

B3 (x,0) 
- - 

= 

along with the forced boundary conditions at x 

- 
ln(1021) 

ln(1021) 

ln(3.62 x 1024: 

-1500 m/set 

-1500 m/set 

-1500 m/set 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
- 

: 0; i.e., 

(4.1) 
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Ni(O,t) = Ne(O,t) 

E2(0,t) = so2(1 - cos 2rWt) 

B2(0,t) = Bo2(1 - cos 2awt) (4.2) 

a solution of the difference equations for both the nonlinear and 

linear systems is desired. In addition, as given previously, Te = 

1040K, Ti = Tn = 20000K and the collision frequencies used are 

V. u = 2.95 x lo* sec'l le = 3.73 x lo5 sec'l, in 

v ei = 2.76 x lOlo sec'l, ven = 1.44 x 1011 sec'l 

V ni = 0.81 x 10' set-I, vne = 5.36 x lo2 set-l . (4.3) 
. 

With the conditions above, there are still five parameters which must 

be assigned values before the difference equations can be solved: 

At, Ax, eo2, Bo2 and w. The discussion which follows is primarily 

for the nonlinear system since the linear equations were stable in 

all stable cases of the nonlinear equations. 

Experimentation revealed that the x-component of the electron 

velocity, ue, had the greatest tendency of all variables to be un- 

stable. The solution for this variable was found to be very dependent 

upon the amplitude of the imposed magnetic field, ijo,, where in 

general the larger Bo2, the greater the tendency to instability. The 

amplitude of the imposed electric field had little influence upon the 

solution for ue and thus the stability was not influenced significantly. 

by this parameter. 

With the amplitudes of the imposed magnetic and electric field 

disturbances, go2 and 202, equal to 0.025 Wb/m2 and 100 V/m, 
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respectively, at a frequency, w, of lOlo set-l , the solution was 

.unstable with a time step of 2 x lo-l3 set and a spatial step of 

2 x 10D4 m (Fig. 1). This figure only shows the x-component of the 

electron velocity, at the first space step away from the location of 

the disturbance as a function of time, but all other variables were 

divergent from the outset also. Note that the solution is unstable 

even though the stability criteria developed in Section III are 

satisfied. In addition the linear system was also unstable under 

these conditions. However, it should be remembered that the linear- 

ized stability criteria were developed from a consideration of-only 

one linearized equation, not the entire system of equations. 

With the time step reduced to 5 x lo-l4 set and the spatial 

step to 2.5 x 10" m, the plot of ue in Fig. 2 indicates a stable 

solution when compared to Fig. 1. After 600 time steps in Fig. 2 

ue is in stable oscillation; whereas, after an equivalent 150 time 

steps in Fig. 1, it has diverged. Figure 2 shows a small fluctuation 

in ues but it should be noted that the scale has been greatly ex- 

panded from that in Fig. 1. This fluctuation would be difficult to 

detect if ue, for these conditions, were plotted with a scale such 

as that in Fig. 1. 

It has been illustrated above that reducing the time and spatial 

steps yields a solution which becomes more stable. However, with the 

reduced time step, if one wishes to cover a larger portion of the 

forced oscillation cycle, w must be increased. The results of in- 

creasing w to loll -' set are presented in Fig. 3. Fifty time Steps 

in Fig. 3 correspond to the same point in the forced oscillatidn 
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cycle as do 500 time steps in Fig. 2. Therefore the plot of ue in 

Fig. 3 is much less stable than that in Fig. 2. In Fig. 4 w has been 

reduced to 4 x lOlo set" and thus 125 time steps in Fig. 4 correspond 

to the same point in the forced oscillation cycle as do 500 time 

steps in Fig. 2 and 50 time steps in Fig. 3. Therefore, Fig, 4 is 

more stable than Fig. 3, but less stable than Fig. 2, as would be 

expected since w lies between the values used in Fig. 2 and Fig. 3. 

Previously it was stated that the amplitude of the imposed 

magnetic field influenced the stability, and from the above it is 

obvious that w should be reduced below the value used in Fig. 4. Thus, 

with At = 5 x lo-l4 sec,and Ax = 2.5 x 10W5 m, it was decided to 

reduce w and Bo2 to values of 2 x lOlo set-l and 0.005 Wb/m2, re- 

spectively, in the presentation of the plots of Figs. 5 and 6. 

Figure 5(a) illustrates that for these conditions the solution is 

stable; though, similar to Fig. 2, there is's slight fluctuation. 

This fluctuation is present to some extent in all the plots presented 

in Fig. 5. 

The above discussion illustrates that the boundary values 

specified, as well as the time and spatial step sizes, influence the 

stability. It can be shown, by setting Ti = Tn = 300°K so that the 

equilibrium values of ui, ue, and un may be set equal to -500 m/set, 

that the conditions under which Fig. 1 was obtained yield a stable 

solution. Thus, the particular initial values also have a great 

influence on the stability. 

2. Presentation of the Solution of the Example Model 

As stated above, the plots presented in Figs. 5 and 6 were 
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obtained for At = 5 x lo-l4 set, Ax = 2:5 x 10m5 m, w = 2 x lOlo -1 set , 

uo2 = 0,005 Wb/m2, and Eo2 = 100 V/m. The initial and forced boundary 

conditions are given in equations (4.1), (4.2) and (4.3). 

Figures 5(a) - 5(k) are plots of those variables with significant 

changes from their equilibrium values as functions of time after one 

spatial step; whereas, Figs. 6(a) - 6(j) are plots of the variables 

versus spatial distance after 100 time steps. Note that for these 

latter plots the portion after about 17 spatial steps is shown enlarged. 

Figure 5(l) is a plot of ue at the origin versus time and Figs. 6(k) 

and 6(l) are plots uf ue and E1 versus spatial distance after 150 time 

steps. As can be seen from plots of the variables versus spatial dis- 

tance, all variables rapidly approach their equilibrium values after 

only a few spatial steps. This is the reason for presenting plots 

of the variables versus time at or near the origin. 

Note that both the linear and non-linear solutions are presented 

on each plot. Figures 5(a) and 5(g) illustrate that in the linear 

case neither u e nor El, when plotted versus time, ever change from 

their respective initial or equilibrium value. However, from the same 

figures this is not the case in the nonlinear solutions since here 

ue and E1 have a time dependence similar to that illustrated by 

the other variables. In a similar manner Figs. 6(a) and 6.(f) illus- 

trate that when plotted versus the spatial coordinate, once again 

the linear solutions of ue and E1 show no change; whereas, the corres- 

ponding nonlinear solutions do. Note that since the nonlinear solu- 

tions approach their equilibrium values after only a few spatial steps 

the two cases quickly become identical. The remaining plots in 
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Figs. 5 and 6 indicate that the linear and non-linear solutions of 

all other variables are essentially the same. 

If one inspects the linear equations it is obvious that with an 

initial equilibrium state the equations which involve the x-components 

of the vector quantities are uncoupled from those involving the y and 

2 components. Thus, when forcing boundary values of only variables 

in these directions, the variables in the x-direction can never change 

from their equilibrium values. It is readily seen that this uncoupling 

does not occur in the nonlinear equations. Thus, one would expect 

the linear and nonlinear solutions of the x-components of the electron 

velocity and electric field, ue and El, to differ to some extent. 
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CONCLUSIONS 

The effect of forcing a disturbance upon a flowing three-fluid 

plasma initially in equilibrium has been investigated. Thus it was 

necessary to solve the nonlinear equations governing the effect of 

forcing a disturbance at a point, as a function of time, upon a three- 

fluid plasma initially in equilibrium. For an example problem the 

solution was obtained using first the nonlinear and then the linearized 

equations. 

A diagonalization of the System of equations was required in 

order to have them in a workable form. This resulted in the assump- 

tion that the temperature of each fluid is a constant in order to 

prevent extra derivatives from appearing. In order to be assured of 

the existence of a unique solution, the boundary values of only cer- 

tain variables could be prescribed as the disturbance. These boundary 

values, wb* :h are functions of time, had to satisfy certain compati- 

bility conditions at the origin of the x-t plane. The time and spatial 

steps used in the difference equations were restricted to be extremely 

small by the speed of light and the magnitude of the collision fre- 

quencies. This was required in order for a stable solution which was 

a good approximation to the solution of the differential equations to 

exist. The number of field points which could be stored in the com- 

puter then determined the region in which the finite difference solu- 

tion could be obtained. This.storage problem is a very real one for 

a system which contains 17 field variables, even though values were 

stored for at most two time steps. 
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A particular example for which a unique solution was shown to 

exist was formulated. A numerical solution of this example, for both 

the linear and nonlinear cases, which converged to the actual solution 

of the differential equations was obtained from the consistent set 

of difference equations developed. Computer experimentation revealed 

that though the stability criteria developed for one linearized equa- 

tion were satisfied, a stable solution was not necessarily obtained. 

In addition to the reduction of the step sizes, care had to be taken 

in the specification of the frequency and amplitude of the forced 

oscillation of the magnetic field in the y-direction at x = 0. From 

the solution of this example, it was found that all variables approach 

their equilibrium values in a very few spatial steps upstream of what 

is considered to be the disturbance. Absolutely nothing about the 

downstream section can be said. In fact, initial conditions cannot 

even be specified there since if they were, variables could not be 

prescribed as functions of time at the point considered to be x = 0. 

A goal of this study was to compare the solutions corresponding 

to the-linear and nonlinear equations for the example formulated. 

With this example it was found that the x-components of the electron 

velocity and the electric field had different values for the linear 

and nonlinear solutions. However, even for these variables the 

solutions became the same within a very few spatial steps. Thus, a 

short distance from the disturbance the linearized equations gave 

solutions as accurate as those obtained using the nonlinear difference 

equations. 
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Figure 1. Electron Velocity in x-Direction vs. Number of Time 
Steps for At = 2 x lo-l3 set, Ax = 2 x 10m4 m, go, 
= 0.025 Wb/m2, ~O:T = 100 V/m, w = lOlO/sec, k = 1. 
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Figure 2. Electron Velocity in x-Direction vs. Number of Time 
Steps for At = 5 x lo-l4 set, Ax = 2.5 x 10d5 m, 
802 = 0.025 Wb/m2, &2.= 100 V/m, w = lOlO/sec, k = 1. 
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Figure 3. Electron Velocity in x-Direction vs. Number of Time 
Steps for At = 5 x lo-l4 set, Ax = 2.5 x 10e5 m, 
B02 = 0.025 Wb/m2, i02 = 100 V/m, w = lOll/sec, k = 1. 
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= 5 x lo-l4 set, Ax = 2.5 x lOa m, B02 = 0.025 
202 = 100 V/m, u = 4 x 10IO/sec, k = 1. 
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Figure 5(a). Electron Velocity in x-Direction vs. Number of Time 
Steps for At = 5 x AO-14 set, Ax = 2.5 x 10e5 m, 
B02 = 0.005 Wb/m2, E02 = 100 V/m, w = 2 :: lOlo set, 
k = 1. 
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Figure 5(b). Ion Velocity in y-Direction vs. Number of Time Steps. 
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Figure 5(c). Electron Velocity in y-Direction vs. Number of Time Steps. 
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Figure 5(d). Ion Velocity in z-Direction vs. Number of Time Steps. 
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Figure 5(e). Electron Velocity in z-Direction vs. Number of Time Steps. 
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Figure 5(f). Neutral Species Velocity in z-Direction vs. Number of Time Steps. 
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Figure 5(g). Electric Field in x-Direction vs. Number of Time Steps. 
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Figure 5(h). Electric Field in y-Direction vs. Number of Time Steps. 
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Figure 5(i). Electric Field in z-Direction vs. Number of Time Steps. 
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Figure 5(j). Magnetic Field in y-Direction vs. Number of Time Steps. 
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Figure 5 (k). Magnetic Field in z-Direction vs. Number of Time Steps. 
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Figure 5(l). Electron Vehcity in x-Direction vs. Number of Time Steps at k - 0. 
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Figure 6(a)~ Electron Velocity ii x-Direction vs. Number 
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! 
for At = 5 x lo-l4 set, 

Ax = 2.5 x 10' B 2 = 0.005 Wb/m2, E02 = 
100 V/m, w = 2 xmi018/sec, t = 100. 
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Figure 6(b). Ion Velocity in y-Direction vs. Number of Spatial Steps. 
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Figure 6(c). Electron Velocity in y-Direction vs. Number of Spatial Steps. 
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Figure 6(d). Ion Velocity in z-Direction vs. Number of Spatial Steps. 
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Figure 6(e). Electron Velocity in z-Direction vs. Number of Spatial Steps. 
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Figure 6(f). Electric Field in x-Direction vs. Number of 
Spatial Steps. 
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Figure 6(g). Electric Field in y-Direction vs. Number of Spatial-Steps. 
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Figure 6(h). Electric Field in z-Direction vs. Number of Spatial Steps. 
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Figure 6(i). Magnetic Field in y-Direction vs. Number of Spatial Steps. 
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Figure 6(j). Magnetic Field in z-Direction vs. Number of Spatial Steps. 
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Figure 6(k). Electron Velocity in x-Direction 
vs. Number of Spatial Steps at 
L = 150. 
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Figure 6(l). Electric Field in x-Direction vs. Number 

of Spatial Steps at 1 = 150. 
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APPENDIX A: GRAM-SCHMIDT ORTHOGONALIZATION PROCEDURE 

Given the set of 17 linearly independent eigenvectors of [A], 

it is desired to find a corresponding set of unit orthogonal eigenvectors. 

The Gram-Schmidt orthogonalization procedure 12 is used for this purpose. 

First, let 

% 
g1 =- 

e<x1> 
where lxx,) = (Tf,,iQ . 

Then, let 

and thus, 

r2- A - X2 - clel 

Now, since an orthogonal set is desired, (el,&> = 0. Therefore, 

from the above, cl = (Gl,yz) and thus 

F2 = rr2 - (iG&& 

and 

If this procedure is continued, it is seen that in general 

j-1 

and then 

Fj = Fj - pi,zj s1 ; j = 2,3,***,17 
i-l 

z- 

Gj = ( j) ; j = 2,3,***,17 
* 

yields the unit orthogonal set required. 
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APPENDIX B: CALCULATION OF AVERAGE COLLISION FREQUENCIES 

The expressions for the average collision frequencies below are 

taken from Murphree and Yamada. 13 Thus, 

4 1 2l-r k e4N 
V 

bd 
ei = ?I (4*Ko)2 (c) (KT,):/" ln'rc' 

where 
K KT 

Ad = ($.$)+ 
e 

and 

e2 r 
C = GITK~KT e 

Using Ne = 1015/cm3 and T = lo4 OK e , v ei is calculated to be 2.76 x 

10IO/sec . Now 

V en = 'eNnQen 

where 
8KT 

C = 
e +--- rrn 

6)s 

e 

and 

Q 
lrd2 =- 

en 4 - 

Tllus, using d = 2.87 x lOa cm as the diameter of an argon atom and 

Nn = 3.62 x 1018/cm3, v en is calculated to be 1.44 x 10ll/sec. Also, 

v. In = CiNnQin 

where 
8KT. & 

c, = (- 1 m=>2 * 
i 

Using Ti = 2000oK, v in is calculated to be 5.9 x 108/sec. With these 
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average collision frequencies and the expressions from Ref. 1, the 

effective collisibn frequencies given in Section II may be obtained. 
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APPENDIX C: COMPUTER PROGRAMS 
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C********************************************~:*~*~~~~~~~~~~ 
C GIVEN THE INITIAL VALUES OF THE ELECTROMAGN.!KTTC AND 
C FLUID FIELD VARIAULES~ PLUS BOUNDARY VALl!XS FOR SObK 
C VARIABLES, THIS PROGRAM USES AN EXPLICI? t~LI‘~lIT~ - 
C GIFFERENCE SCHEME TO SOLVE THE NONLINEAR EQUATP.Oh!S. 
C THE VARIABLES ARE PRINTED AT A PARTICULAR TIME STEP 
C VgRSUS THE SPACE STEPS. 
C; THE FOLLOWING DEFINES THE SYME!OLS USED. 
C NI~NE~hN=NlJMUER DENSITIES OF IONSvELECTRcNS, AN!? 
C NEUTRALS RESr*ECT IVELY l 

C ZETAl,ZETA2,ZXTAS=NATURAL LOG OF THE ION,ELECTRONrAND 
C NEUTRAL NUKtiER DENSITIES RESPECTIVELY. 
c UI~UE~UNWELOCLTY I:il X DIRECTION OF IONS~ELECTRONS~ 
C AND NEUTRALS 
C VI,VE,VN=VELOCITY IN Y DIRiCTION OF XONS,ELE~TROr~SrAr~~D 
C NEUTRALS 
C WI@WE,WK=VELOCITY Ii\r Z DIRECTION OF IONSpELECT!?O~JSt 
C AND NEUTRALS 
C E1vE2,EJ=ELECTRIC FIELD COMPONENTS 1% THE X,YvZ 
C DI'RECTIONS 
C B~P~~~P~~=MAGNETIC FIELD COMPONENTS I’J THF X,Yvz 

: 
DIRECTIOrdS 
Al,A2,A3=THERMAL VELOCITIES OF THE IONS,ELECT”(‘~‘~,A~~~! 

C NEUTRALS ASSUMING EACH FLUID IS ISOTHERMAL 
C MI,ME,kN=MA5S OF AN ION,ELECTRON,OR NEUTpAL 
C X,T=TtiE STEP SIZES IFi THE SPaTIAL ANi’, TIk',E C@OR;S;Tr.lAlE?, 
C C=SPEEti OF LIGHT 
C i\/lU=PEfiPiEABILITY OF A VACUUM 
C KO=PERMlTTIVITY OF A VACUUM 
C Tl r 12 ~TS=TEMPEHATURE OF THE IONS,ELECTROt&* Ab.!D NFIJTRPL L 

: 
RC=ROLTZFIANN) s CONSTANT 

.E=ELECTRONIC CHARGE 
C ,VL,V2r..., V17zTHE Eil;MENTS OF THE COLL~JM MATRTX \I r IN 
C TiiE TRAr,.JSFOIZ~~iATL~:.l U-TV I) 
C ************z+****** STATEMENT OF’ THL: pRc)RLEp; Qee*e*h**** 
C ThE F’RtifiLEi\l:; IS SUCH THAT AT X=0 \uE FORCE E2 AND 32 TO 
C 61; CkliTkIiu F-~~[.~CTIONS OF TIMEI PLUS,’ WE I\(-S;o S”)!-:CT!--Y 
C TtIAT r!t=NI AT X=0. TtqN IF WE ASSlJi4~ THAT 11% rltE P ~‘3) I.!Fd 
C ARE. ALL IN TtQ NEGATIVE X DIRE.CTION AN\? THAT !JI .iT. 
C Ale WE .LT. A2 v A742 UN .GT. A3 ME: MCST CALC~JLAT~-~ 4L.L 
C O'TtiEti VARIAL~L~-:S’ AT X=0. OF CC’U!?SE Wt: ALS;, CAI.CJ.‘LATF 
c ALL 31:tiEH VAi<IAbjLES AT LATER TIMES A'%<D DiFFE;I!‘Et\!i‘ 
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C SPATIAL LOCAT]IONSe INSTEAD OF E% AND W? WE COlf!..D HAVE 
C .SPECIFIED DZ AND R3 ?I? E2 AND E3 Qf? E3 AW t’Y?n 
C*****~**:~*~~~~~33*~~~~-,,. J- .% .L -I* .5 ~“*~tl&~~~h~~~.~O~~~.:~~~~ . ..._....,.. .::*,- ._..... . . . * ..- 4. .a- .I* 4, .R, &A ..* . . , . . . . _. a.. ,.. . _. . _. 

NIO=',OD21 
NEO=1.0021 
NNO=3 e 62D24 
X=2.5D-5 
PI=3.1415927DO 
E=l.600-19 
Bl=l.OD-4 
C=3.OD& 
MI=Oe673D-25 
ME=9.1 lG-31. 
MN=M I 
MU-12.56D-7 
UC=le3BD-23 
Tl=2000oODO 
T2=1.OD4 
T3=2000.000 
GF12=3.73D5 
CF13=2.%D8 
CF21=2676DlO 
CF23=le4QDll 
CF3l=Oa615D5 
CF32=5.36&? 
EO2=lOOoODO 
802=uo005DO 
OMEGA=2 e 009 0 
Al=DSBRT(F?C*Tl/MI 1 
A2=DSQRT (BCcT2/ME) 
AS=DSQRT (BC+T3/iW 1 
D1=1.0DO/DS~i~T(l.ODO+Al~~2) 
L~2=l.OGO/DS~HT(l.ODO~A2~~2) 
D3~~.0DO/DS~KT(l,nDO+A~~~<2) 
D’~=loOD04DSwRT(1,0D~+C~~~2) 

C THIS HEADS ipd THE INITIAL VAI,UES;,THE: QRIC,IN IS T’AKEd 
C TO UE (lP1) 

DO 86 ii=10301 
LZl 
NI (I<,L)=NIO 

-r\;E(liPL)=I\IEO 
NN (K P L 1 =NNO 
1II (KPL) =-1500,ODO 
UE6Kc.L) =-1500.u00 
UN ( K P.L 1 =-1500,000 
VI~K?L>=OoOL’~i~ 
VE~KPLl=O,oiJu 
VN!KIL)=QeO;jO 
~dI(K~Ll=OoODO 
HE SK PL 1 =O o Oil0 
liJN(l<r1,)=OeuDO 
El.(KPL~=uoooo 
E21KrL)=OeodO 
E3(KPL)=OoOUO 
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B~(KIL)=O.ODO 
B3(K,L)=O.ODO 
ZETAI(K,L)=DLOG(NI(K,L)). 
ZETA2(KvL)=DLOG(NE(K,L)) 
ZETA3(KvL)=DLOG(NN(K,L)) 
Vl(K,L)=D4*(C*B3(K,L)-E2(K,L)) 
V2(K,L)=D4*(ES(K,L)+C*~2(K,L)) 
V~(KPL)=D~*(UE(K,L)-A~*ZETA~(K,L)) 
V~(K,L)=D~*(UI(KIL)-A~*ZETA~(K,L)) 
VS(KPL)=D~*(UN(K,L)-A~*ZETA~(K~L)) 
&'6(KvL)=Dl*(ZETAl(K~L)+Al*UI(K~L)) 
J~(KPL)=D~*(ZETA~(KPL)+A~*UN(KIL)) 
VB(KIL)=VI(K~L) 
V9(KvL)=WI(KrL) 
VlO(K,L)=VEi(K,L) 
Vll(K,L)=WE(K,L) 
V12(K,L)=VN(K,L) 
V13(KtL)=bN(K,L) 
V14(KeL)=El(K,L) 
V~~(KPL)=D~*(ZETA~(K,L)+A~*UE(K,L)~ 
V~~(K,L>=D~*(C*E~(KPL)+B~(KPL)) 
V17(K,L)=D4*(62(K,L)-C*E3(K,L)) 

80 CONTINUE 
C TtiE LNITIAL VALUES HAVE NOW BEEN REM:) IN AND HAVE 
C UFJDER GONE THE TRANSFORMATIOi~.I V= ( T II;~VERSE 1 (U) 

bi1=1 
22 J=301-Ml 

T=SrOD-14 
M2=100 
DO 54 K=l,J 
Cl=-D4*C**2*MU*E*(VlO(K,L)*DEXP(C2*(Vl5(K~L)-A2* 

lV3(K,L)))-V~(K,L)*DEXP(D1*(v6(K,L]-kl*V4(K~L)))) 
C2=04*C**2*MU*E*(Vll(K,i)*DEXP(D2*(V1S(K,L~-A2*V3 

l(K,L)))-V9(K,L)*DEXP(Dl*(V6(K~L)-Al*V4(K,L)))) 
C3=D2*~-~E/~E~*~V14~K,L)+VlO~K~L~*D~~*~C*Vl~K~L~+Vl6 

1~K~L~l-V11~t~~L~*D4~C*V2~K,L)+Vl7~K~L~~~+C~~l*~Dl* 
2(V4(K,L)+Al+V6(K,L))-D2*(V3(K,L)+R2*V15(K~L)))+CF23* 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

C4=Dl*((E/~I)*(V14(K1L)+VB(K,L)~D4*(C*V1(K~L)+Vl6 
'i(KIL))-V9(K,L)*D4*(C*V2(K~L)~Vl7(K,L)))*cFl2*(D2* 
2(V3(K,L)+A2*V15(K,L))-Dl*(V4(K,L)+A1*VGtK~L)))+CFl3* 
3(G3*(V5(K,L)+AS*V7(K,L))-D1*(V4(K,L)’A1*V6(K~L)))) 

C5=03*(CF3l*(Dl*(V4(K,L)+A1*V6(K~L))-D3~(V5(K~L)~A3* 
lV7(K,L)))+CF32*(02*(V3(K,L)+A2*VlS(K~L))-D3*(V5(K~L)~ 
2A3*V7(K,L)))) 

C6=Al*C4 
C7=A3*C5 
CB=(E/WII*(D4*(C*VlG(K,L)-V1(K,L))~~l*V9(K~L)-Dl*D4* 

1(V4(K~L)+A1*~6(K~L))*(C*Vl~K~L)+V16(K,L~~~~CFl2* 
~(V~O(KIL)-V~(KIL))+CF~~*(V~~(KPL)-VS(K,L)) 

C9=(E/~I)*(DY*(V2(K,L)-C*V17(K,L))+;,1*O4*(V4(K~L)+Al* 
lV6(K~L))*(C*V2(K,L)+V17(K,L))~~l~V~~K~L~~+CFl2*~Vll 
2(K,L)-Vg(ti,L))+CF13*(Vl~(KfL)-V9(K,L)) 

C~~=(-E/~J;~)*(D~*(C*V~~(K,L)-V~(KIL)-’~~(K~L) )+Bl*Vll(KtL)-D2* 
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18 

17 

54 
C 
C 
C 

82 

V16~1,Ltl~=~l.ODO/C~*~~l.ODO/D4)~Gl~L+1)tVl~l~L+l)) 
V17(1,Lt9~~~1,ODO/D4)*G2~L+l)-C~V2(l~L+l) 
IF(Ml.EQoM21GO TO 17 
GO TO 54 
ZETA~(KI~)=D~*(V~(K~~)-A~*V~(K,~)) 
ZETA2(K,Z!)=D2s(V15(K,2)-A2*V3(K,2)) 
ZETA~(K,~)=L-J~*(V~(K~~)-A~*V~(K,~)) 
Ni(K,2)=DEXP(ZETAl(Kv2)) 
NE(K12)=DE?:P(ZETA%(K,2)) 
NN(K,2)=DEXP(ZETA3(K,2)) 
UI(Kv2)=Dl*(V&(K,2)+Al*V6(Kv2)) 
UE(K,2)=D2*(VS(K,2)+A2*&'15fKi2)) 
UN(K12)=D3~(VS(K,2)+A3~V7(K,2)) 
VI(K,2)=V8(Kc2) 
VE(K~2)=V10(1<,2) 
VN(K,2)=V12(K,2) 
WI(KP2~)=V9(Kr21 
WE(Kv2)=Vll(K,2) 
WN(K,2)=V13(K,2) 
El(K,2)=V14(K,2) 
E2(Kv2)=D4*(C*V16(K12)-Vl(Kv2)) 
E3(Kv2)=D4*(V2(Kv2)-C*V17(K,2)) 
82(K,2)=D4~(C*V2(K,2)+V17(K,2)) 
63(Kv2)=04*(C*Vl(K*2)+V16(K,2)) 
WRITE(6,62)~li,Kl,NI(Kv2) rK,Ml,NE(K,2) vK,Ml,NN(K,2). 
bvRITE(6r64) K,MlvUf(K,2),K,Ml,UE(K,2)vKvMl~UN(K,2) 
WRITE(6,66) K,~~~~,VI(K,~),K,M~,VE(KI~),K,M~’VN(K~~) 
WRITE(6,68) K,Ml,tiI[Kv2) ,K,Ml,WE(K,2)rK,Ml,WM(K12) 
WRITE(6,70) K,Ml,El(K,2)rK,Ml,E2(K,2),K,Mi,E3(1(~2) 
WRITE(6e721 K,Ml,B2(K,2)vKvMlvB3(K*2) 
CONTINUE 
IN ORDER TO NOT OVERLOAD THE STORAGE CAPACITY OF THE 
COMPUTER I AM RENAMING THE VARIABLES AFTER EVERY 
TIME STEP 
DO 82 K=lvJ 
Vl(Kvl)=Vl(K,2) 
V2(Kvl)=V2(K,2) 
V3(K,l)=V3(K,2) 
V4(Kvl)=V4(K,2) 
V5(Kpl)=V5(K,2) 
V6(K,l)=V6(K,2) 
V7(Kvl)=V7(K,2) 
V6(Kvl)=V6(K,2) 
V9(Kvl)=V9(K,2) 
VlO(Kvl)=VlO(K~21 
Vll(Kvl)=Vll(Kv2) 
V12(Kll)=V12iKv2) 
V13(Ktl)=VlJ(Kv2) 
Vl4tKvl)=V14(Kv2) 
V15(Kd=Vl$(K~2) 
Vl6(Kd)=Vl6JK12) 
b'l7fK*l)=V17(K,2) 
CONTINUE 
Ml=Ml.+l 
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IF(Ml.LE.M2)GO TO 22 
70 FORMAT('O'r'El(',I3?'~',~13,') ='PD22.16r5XI'E2(',IS,' 

lP'PI3P') ="D22.16'5X-"E3("13"r"~3"1 =',D22.16) 
62 FORMAT(‘O’,‘NI(‘,I3t’,‘rf3,‘) =‘,D22,16~5Xe’NE(‘,I3,‘r 

1’,13”) =‘~D22,16r5X~‘NN(‘rI3,‘,,,IS,‘)~z’rD22.16) 
64 FORMAT(~O"'UI("I~",',I~P') =',D22.16,5Xv'UE(',I3,' 

lv'rI3r') ="022,16'5X"UN("~3,'r',13") ='oD22sl6) 
66 FORMAT('O','VI('~I3e'v'eI3,') = "D~~~S~PS~"VE(P'I~" 

lv'rI3") =',022.16'5X."VNI'rI3rt,'oIS,O) -vvn22.16) 
68 FORMAT('O'r'WI(',I3,'o',I300) ='rD22"16o~X,'W~('~13, 

1,',13e') =',D22.16r5X,'WN('oI3~'~'~1~.~0) r'p(J22.161 
72 FORMAT('O'r'82(',13",O,I3,') =',D22n~G'~X"B3(',13,0 

l"'I3") =',Q22.16) 
STOP 
END 
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C 

: 

cc 
C 
C 
C 

c” 

2 
C 

: 
C 
C 
C 
C 

cc 

: 

E 
C 
C 
C 
C 
C 
C 

: 

: 

cc 
C 
C 
C 
C 

GIVEN THE INITIAL VALUES OF THE ELECTROMAGNETIC AND 
FLUID FIELD VARIABLESI PLUS BOUNDARY VALUES FOR SOME 
VARIABLES, THIS PROGRAM USES AN EXPLICIT FINITE - 
DIFFERENCE SCHEME TO SOLVE THE LINEARIZED EQUATIONSI 
TH VARIABLES ARE PRINTED AT A PARTICULAR SPACE STEP 
VE SUS THE TIME $;TL?S 
TH FOLLOWING DEFINES THE SYMBOLS USED. 
NI NEvNN=NUMBER DENSITIES OF IONS~ELECTRONS, AND 
NE 

i 
TRALS RESPECTIVELY. 

ZETAl,ZETA2,ZETA3=RATIO OF FLUCTUATION IN NUMREI? 
DENSITY TO THE EQUILIBRIUM VALUE FOR IONSeELECTRONS 
AND NEUTRALS 
uI~JE&N=vELoCITY IN X DIRECTION OF IONStELECTRONSp 
AND NEUTRALS 
VIeVE,VN=VECOCITY IN Y DIRECTION OF IONS,ELECTRONStAND 
NEUTRALS 
WItWE,WN=VELOCITY IN Z DIRECTION OF IONS,ELECTRONSP 
AND NEUTRALS 
ElvE2rE3=ELECTRIC FIELD COMPONENTS I!'l THE XcYtZ 
DIRECTIONS 
Bl,B2,63=MAGNETIC FIELD COMPONENTS IN THE X,Y,Z 
DIRECTIONS 
AlrA2rd3=THERMAL VELOCITIES OF THE IONSeELECTRONS,AND 
NEUTRALS ASSUMING EACH FLUID IS ISOTHERMAL 
MI@MEtMN=MASS OF AN ION~ELECTRON~OR NEUTRAL 
X,T=THE STEP SIZES IN THE SPATIAL AND TIME COORPXNATES 
C=SPEED OF LIGHT 
MU=PERMEABILITY OF A VACUUM 
KO=PERMITTIVITY OF A VACUUM 
TlrT2,T3=TEMPERATuRE OF THE IONS,ELECTRONS,AND NEUTRAL 
BC=BOLTZMANN’S CONSTANT 
E=ELECTRONIC CHARGE 
Vl,V2t...rV17=THE ELEMENTS OF THE COLLUM MATRIX V p IN 
THE TRANSFORMATION ‘J=TV. 

tw+t*t*$wwi~tw~*** STATEMENT OF THE PROBLEM **l*t****** 
THE PROBLEM IS SUCH THAT AT X=0 WE FORCE E2 AND B2 TO 
BE CERTAIN FUNCTIONS OF TIME t PLUS, WE ALSO SPECIFY 
THAT NE=NI AT X=0. THEN IF kJE ASSUME THAT UI~JEIAND UN 
ARE ALL IN THE NEGATIVE X DIRECTION AND THAT UX .GT. 
Ale UE .LT. A2, AND UN .GT. A3 WE MUST CALCULATE ALL 
OTHER VARIABLES AT X=0. OF COURSE WE ALSO CALCULATE 

- .- - -- - 
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ALL OTHER VARIABLES AT LATER TIMES AND DIFFERENT 
SPATIAL LOCATIONS. INSTEAD OF E2 AND 82 WE COULD HAVE 

C SPECIFIED 82 AND 83 OR E2 AND E3 OR E3 AND 83. 
C444444444444444444~444444444444444444444444444444’44444444 

NIO=lrOD21 
NEO=lrOD21 
NNO=3.62024 
UIO=-1500.0~0 
UEO=-1500.000 
UNO=-1500.000 
X=2.5D-5 
PI=3.1415927Do 
E=l.dOD-19 
Bl=l.OD-4 
C=3rOD8 
MI=0,673D-25 
ME=9.110-31 
MN=MI 
MU=12.560-7 
QC=1,38D-23 
‘F1=2000.ODO 
T2=1,QD4 
T3=2000,0DO 
CF12=3,73D5 
CF13=2,95D8 
CF21=2.76DlO 
CF23=1,44Dll 
CF31=0.815D5 
CF32=5.36D2 
EO2=1OO.ODO 
OMEGA=2,ODlO 
802=0.005DO 
Al=DSQRT(BC*Tl/MI) 
A2=DSQRT(BC*T2/ME) 
A3=DSQRT(BC*T3/MN) 
DP=1.000/DSQRT(1.000+A1*~2) 
D2=1.ODO/DSQRT(l.ODO+A2442) 
D3=1,ODO/DSQRT(l,ODO+A3*42) 
D4=1.ODO/DSQRT(l.ODO+C4*2) 

C THIS READS IN THE INITIAL VALUE&THE ORIGIN IS TAKEN 
C TO BE (lrl) 

DO 80 K=1~301 
L=l 
NI(KIL)=O.ODO 
NE(K,L)=O.ODO 
NN(K,L)=O.OUO 
UI(KvL)=O.ODO 
UE(KtL)=O.ODO 
UN(KtL)=O.ODO 
VI(KvL)=O.OBO 
VE(K,L)=O.ODO 
VN(KvL)=O.OuO 
WI(KvL)=O.ODO 
WE(K,L)=O,ODO 
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WN(K,L)=O,ODO 
EI(K,L9=O.ODO 
E’i?(K,L)=O.ODO 
E3(K,L)=O.OtiO 
82(K,L)=0.000 
Bj(K,L)=O.ODO 
ZETAl(K,L)=idI(K,L9/NIO 
ZETA2(K,L)=NE(K,L)/NEO 
ZETA~(K,L)=NN(K,L~/NNO 
Vl(K,L)=D4*(C*t33(K,L)-E2(K,L)) 
VZ(K,L)=D4*(E3(K,L)+C*B2(K,L)9 
V3(K,L)=D28(UE(K,L)-A2*ZETA20) 
V4~K,L9=Dl*(UIIK,L9=Al*ZETAl~K,L9) 
VS(K,L)=O~*(UN(K,L~-A~*ZETA~(KFL~~ 
V~(K,L~=D~~(ZETA~(K,L~+A~*UI~K~LI) 
V7(K,L)=D3*iZETA3(K,L)+A3*UN(K,L99 
VB(K,L);VI(K,L) 
Vg(K,L)=WI(K,L) 
VlO(K,L)=VE(K,L9 
Vll(K,L)=WE(K,L) 
V~~(K,L)=VN(K,L) 
V13iK,L)=WN(K,L9 
V14(K,L)=El(K,L9 
VlS(K,L)=O2*(ZETA2(K,L)+A2*UE(K,L99 
V16(K,L)=O4*(C*E2(K,L)+850) 
Vlf(K,L)=D4*(82(K,L)-C*E3(K,L99 

80 CONTINUE 
C THE INITIAL VALUES HAVE NOW BEEN READ IN AND HAVE 
C UNDER GONE THE TRANSFORMATION V=(T XNVERSE)(U9 

Ml=1 
22 J=301-Ml 

T=5.00-14' 
DO 54 K=l,J 
C3=-04*C**2~MUrE*(N~O~VlO(K,L)-NIO*VR(K,L~~ 
C2=D~~*C**2*MU*E*(NEO~Vll(K,L)-NIO*V9(~~,1.9) 
C~=O~*(-(E/ME)~V~~(K,L)+CF~~*(O~*(V~(K,L~+A~*V~(K,L)~- 

lD2e(V3(K,L)+A2*VlS(K,L9)9+CF238(D3*(V5(t(,L)~A3*V7 
2(K,L9)-02*(V3(K,L)+A2*VlS(K,L19)9 

CY=Ol*((E/MI)*V14(K,L)+CF12r(D2*(V3(K,L9+A2~~~15~K,L9~~ 
lOl*(V4(K,L9+Al*V6(KiL)))+CFl3*(VS(K,L9~A~*V7 
2(K,L)j=Dl*(VY(K,L)+Al*V60))) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~V~(K,L)))+CF~~*(D~*(V~(KIL)+A~~V~S(K,L~)-D~*~V~(K,L)+ 
2A3*V7(K,L9999 

C6=Al*C4 j 
C7=A3*C5 
CB=~E/MI9*(D4~~C*V16~K,L~-V1(K,L~)+B1"V9~K,L9~l~IO*D4~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
2(V12(K,L)-V8cK,L)9 

C9=(E/MI)*(D~9(V2(K,L)-C*V17(K,L))+VXO*D4*(C*V2(K,L9+ 
~V~~(K,L))-~~~V~(K,L))+CF~~*(V~I(K,L)-V~~~F~~~+~~~~* 
2(V13(ti,L9-V~(K,L)9 

c10=- (E/ME9~(DY*(C*V16(K,L)-VI(K,L)9~~~*Vl~(K,L)-~JEO* 
lD4~~C*Vl~K,L~+V16~K,L~~~+CF2l*~V8~K,L~'VlO~K,L~~+CF2~* 



III II Ill I 1111 I I I. 11111111 I III II I I I II II I I I 111111 111 I II 

276 



277 

54 CONTINUE 
M2=2 
ZEfA1(M2,2)=O~*(V6(M2r2~-Al*V4~M2,2)) 
ZETA~(M~F~)=D~*(V~~(M~,~)-A~*V~O) 
ZETA~(M~F~)=D~*(V~(M~~~)-A~*VS~M~,~)) 
NI(M~F~)=ZETA~(M~F~)*NIO 
NE(M2,21=ZETA2(M2,2)rNEO 
NN(M~F~)=ZETA~(M~F~)*NNO 
UI(M2,2)=Ol*(V4(M2~2)+Al~V6~M2,2)) 
UE(M~F~)=O~*(V~(M~F~)+A~*V~~~M~F~)) 
UN(M~F~~=D~*(VS(M~F~)+A~*V~(M~,~)) 
VI(M2,2)=VB(M2,2) 
VE(M2,2)=VlO(M2,2) 
VN(M2,2)=V12(M2,2) 
WI(M2,2)=V9(M2,2) 
WE(M2,2)=Vll(M2,21 
WN(M2,2)=V13(M2,2) 
El(M2,2)=V14(M2~2) 
E2(M2~~)=04*~C*V16(M2,2)-V1(M2,2)) 
E3-(M2,2)=D4*(V2(M2,2)-C*Vl7(M2,2)) 
62(M2,2)=D4*(C*V2(M2,2)+V17(M2~2)) 
B3(M2,2)=D4*(C*Vl(M2~2)~Vl6~M2,2)) 
NI(M~F~)=NI(M~F~)+N~O 
NE(M2r2)=NE(M2,29+NEO 
NN(M2,2)=NN(M2r29+NNO 
UI(M2r2)=UI(M2r2)+UIO 
UE(M2,2)=UE(M2,2)+UEO 
UN(M2,2)=UN(M2,29+UNO 
WRITE(6r62) M2rM1rNI('M2r2)~M2rMlrNE~M2,2),M2,Mlr 

lNN(M2r2) 
WRITE(6r64) M2rM1rUI~M2r2~rM2rM1rUE~M2r2),M2,M1, 

lUN(M2r2) 
WRITE(6r66) M2rM1rVI~M2r2~rM2rM1r~E~M2,2~rM2,M1, 

lVN(M2r2) 
WRITE(6r68) M2rMlrWI(M2r2)rM2rM1,WE(M2r2),M2,Mlr 

lWN(M2r2) 
WRITE(6,70) M2rM1~E1(M2,2)rM2rM1,E2(M2r2),M2,Mlr 

.lE3(M2,2) 
WRITE(6r721 M~FM~,B~(M~F~)FM~FM~FB~~M~,~) 
IN ORDER TO NOT OVERLOAO THE STORAGE CAPACITY OF THE 
COMPUTER I AM RENAMING THE VARIABLES AFTER EVERY TIME 

C STEP 
DO 82 K=l,J 
Vl(K,l)=Vl(Kr2) 
V2(Krl)=V2(Kr2) 
V3(Krl)=V3(Kr29 
V4(Krl)=V4(Kr2) 
V5(Krl)=VS(Kr2) 
V6(Krl)=V6(Kr2) 
V7(Krl)=V7(Kr2) 
V8(Krl)=V8(Kr21 
V9(Krl)=V9(Kr2) 
V10(Krl)=VlO(Kr2) 
V1l(Kr1)=Vl1(Kr2) : 
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Vl2(Krl)=Vl2(K,2) . 
V13(Krl)=v13(~~2) 
V14(Krl)=V14(Kr2) 
V15(K,l)=V15(Kr2) 
Vl6(Krl)=V16(KrE) 
V17(Krl)=V17(Kr2) 

82 CONTINUE 
Ml=Ml+l 
IF(Ml.LE.270)GO TO 22 

70 FORMAT('O','E1(',I3r',',I3r') =',D2~~16,5Xr'~2(',~3,' 
1r’r13,0 =‘;~22.16r5Xr’E3~‘r13,‘,‘,I3,‘~ =‘,022.16) 

62 FORMAT('O'r'NI(',X3r','rI3,') ='rD22.16r5X,'NE(',13,', 
l'rI3rO =',U22.16,5Xr'NN~'r13,'r,,I3,',13r'~ =',D22016) 

64 FORMAT(‘O’r’UI(‘,I3r,,‘,I3,‘) ='rD22.16r5X,'UE(',I3,' 
lr'rI3,') =‘FL~~~.~~FSXF’UN(‘,X~,‘,‘,I~~‘) =‘rD22.16) 

66 FORMAT('O','VI('rI3r,,',I3r') ='~022.16~5X~'~~(',I3~' 
1,',13,') =‘,~22.16r5Xr’VN~‘,I3,‘,‘,I3,1~ =‘,022.16) 

68 FORMAT~‘O’,‘WI~‘,X~~‘,‘,IJ,‘) =‘rD22.16,5X,‘~E(‘,I3,’ 
lr'rI3,') =‘,W~2.l6r5X,‘W~~‘rI3,‘,‘,I3,‘~ =‘,@22.16) 

72 FORMAT~‘O’,‘M2~‘,I3r’,‘rI3,‘~ =‘,U22.16,5X,‘~3(‘,I3,’ 
ir'rI3,') =‘,U22,16) 

STOP 
END 
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